scholarly journals Extracellular vesicles and intercellular communication in the central nervous system

Author(s):  
Lorena R. Lizarraga‐Valderrama ◽  
Graham K. Sheridan
Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 492
Author(s):  
Charlotte A. René ◽  
Robin J. Parks

The central nervous system (CNS) is surrounded by the blood–brain barrier (BBB), a semipermeable border of endothelial cells that prevents pathogens, solutes and most molecules from non-selectively crossing into the CNS. Thus, the BBB acts to protect the CNS from potentially deleterious insults. Unfortunately, the BBB also frequently presents a significant barrier to therapies, impeding passage of drugs and biologicals to target cells within the CNS. This review provides an overview of different approaches to deliver therapeutics across the BBB, with an emphasis in extracellular vesicles as delivery vehicles to the CNS.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yang Tian ◽  
Chen Fu ◽  
Yifan Wu ◽  
Yao Lu ◽  
Xuemei Liu ◽  
...  

Exosomes are a type of extracellular vesicles secreted by almost all kinds of mammalian cells that shuttle “cargo” from one cell to another, indicative of its role in cell-to-cell transportation. Interestingly, exosomes are known to undergo alterations or serve as a pathway in multiple diseases, including neurodegenerative diseases. In the central nervous system (CNS), exosomes originating from neurons or glia cells contribute to or inhibit the progression of CNS-related diseases in special ways. In lieu of this, the current study investigated the effect of CNS cell-derived exosomes on different neurodegenerative diseases.


2020 ◽  
Vol 21 (23) ◽  
pp. 9111
Author(s):  
José Antonio López-Guerrero ◽  
Inés Ripa ◽  
Sabina Andreu ◽  
Raquel Bello-Morales

It is being increasingly demonstrated that extracellular vesicles (EVs) are deeply involved in the physiology of the central nervous system (CNS). Processes such as synaptic activity, neuron-glia communication, myelination and immune response are modulated by EVs. Likewise, these vesicles may participate in many pathological processes, both as triggers of disease or, on the contrary, as mechanisms of repair. EVs play relevant roles in neurodegenerative disorders such as Alzheimer’s or Parkinson’s diseases, in viral infections of the CNS and in demyelinating pathologies such as multiple sclerosis (MS). This review describes the involvement of these membrane vesicles in major demyelinating diseases, including MS, neuromyelitis optica, progressive multifocal leukoencephalopathy and demyelination associated to herpesviruses.


2015 ◽  
Vol 26 (5) ◽  
pp. 489-506 ◽  
Author(s):  
Manuela Marcoli ◽  
Luigi F. Agnati ◽  
Francesco Benedetti ◽  
Susanna Genedani ◽  
Diego Guidolin ◽  
...  

AbstractMultiple players are involved in the brain integrative action besides the classical neuronal and astrocyte networks. In the past, the concept of complex cellular networks has been introduced to indicate that all the cell types in the brain can play roles in its integrative action. Intercellular communication in the complex cellular networks depends not only on well-delimited communication channels (wiring transmission) but also on diffusion of signals in physically poorly delimited extracellular space pathways (volume transmission). Thus, the extracellular space and the extracellular matrix are the main players in the intercellular communication modes in the brain. Hence, the extracellular matrix is an ‘intelligent glue’ that fills the brain and, together with the extracellular space, contributes to the building-up of the complex cellular networks. In addition, the extracellular matrix is part of what has been defined as the global molecular network enmeshing the entire central nervous system, and plays important roles in synaptic contact homeostasis and plasticity. From these premises, a concept is introduced that the global molecular network, by enmeshing the central nervous system, contributes to the brain holistic behavior. Furthermore, it is suggested that plastic ‘brain compartments’ can be detected in the central nervous system based on the astrocyte three-dimensional tiling of the brain volume and on the existence of local differences in cell types and extracellular space fluid and extracellular matrix composition. The relevance of the present view for neuropsychiatry is discussed. A glossary box with terms and definitions is provided.


e-Neuroforum ◽  
2013 ◽  
Vol 19 (4) ◽  
Author(s):  
E.-M. Krämer-Albers ◽  
C. Frühbeis

AbstractCommunication between cells is a basic requirement for proper nervous system function. Glial cells execute various functions, operating in close coordination with neurons. Recent research revealed that cell commu­nication is mediated by the exchange of extracellular vesicles, which are also secreted by glial cells and neurons. Extracellular vesicles comprise exosomes and microvesicles, which deliver proteins and ribonucleic acids to target cells. As a result of transfer, the vesicle cargo components can modulate the phe­notype of recipient cells. Here, we discuss the characteristics and functions of extracellular vesicles in general and in particular in the central nervous system, where myelinat­ing oligodendrocytes release exosomes in response to neurotransmitter signals, which are internalized by neurons and exhibit neuroprotective functions.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yadaly Gassama ◽  
Alexandre Favereaux

Extracellular vesicles or EVs are secreted by most, if not all, eukaryote cell types and recaptured by neighboring or distant cells. Their cargo, composed of a vast diversity of proteins, lipids, and nucleic acids, supports the EVs’ inter-cellular communication. The role of EVs in many cellular processes is now well documented both in physiological and pathological conditions. In this review, we focus on the role of EVs in the central nervous system (CNS) in physiological as well as pathological conditions such as neurodegenerative diseases or brain cancers. We also discuss the future of EVs in clinical research, in particular, their value as biomarkers as well as innovative therapeutic agents. While an increasing number of studies reveal EV research as a promising field, progress in the standardization of protocols and innovation in analysis as well as in research tools is needed to make a breakthrough in our understanding of their impact in the pathophysiology of the brain.


Sign in / Sign up

Export Citation Format

Share Document