A Methodology for Designing Services: A Modeling Method, Design Method, CAD Tool, and Their Industrial Applications

2010 ◽  
pp. 268-293
Author(s):  
Tomohiko Sakao ◽  
Erik Sundin ◽  
Mattias Lindahl ◽  
Yoshiki Shimomura
Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1434 ◽  
Author(s):  
Wonhee Kim ◽  
Sangmin Suh

For several decades, disturbance observers (DOs) have been widely utilized to enhance tracking performance by reducing external disturbances in different industrial applications. However, although a DO is a verified control structure, a conventional DO does not guarantee stability. This paper proposes a stability-guaranteed design method, while maintaining the DO structure. The proposed design method uses a linear matrix inequality (LMI)-based H∞ control because the LMI-based control guarantees the stability of closed loop systems. However, applying the DO design to the LMI framework is not trivial because there are two control targets, whereas the standard LMI stabilizes a single control target. In this study, the problem is first resolved by building a single fictitious model because the two models are serial and can be considered as a single model from the Q-filter point of view. Using the proposed design framework, all-stabilizing Q filters are calculated. In addition, for the stability and robustness of the DO, two metrics are proposed to quantify the stability and robustness and combined into a single unified index to satisfy both metrics. Based on an application example, it is verified that the proposed method is effective, with a performance improvement of 10.8%.


Author(s):  
O.A. Solovyeva ◽  
K.V. Soldatova ◽  
Y.B. Galerkin ◽  
A.F. Rekstin

Vaneless diffusers of industrial centrifugal compressors most often consist of a tapered inlet section and a parallel-walled main section. The study proposes to choose such a width of the main section, at which the flow in the diffuser remains unseparated at the surge limit. To implement the primary design method, an empirical formula was obtained to determine the minimum continuous flow angle depending on the relative width of the diffuser. The primary design of eighteen stages was completed, covering a practically important range of parameters. The corresponding gas-dynamic characteristics were calculated by the universal modeling method, the dimensions and angles of the flow were analyzed. The proposed primary design method is integrated into the universal modeling method and is used in design practice.


Author(s):  
Piyush Sabharwall ◽  
Denis E. Clark ◽  
Ronald E. Mizia ◽  
Michael V. Glazoff ◽  
Michael G. McKellar

The goal of next generation reactors is to increase energy efficiency in the production of electricity and provide high-temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required flow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design specifications for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.


2021 ◽  
pp. 181-197
Author(s):  
Baptiste Turpin ◽  
Eline Y. Bijman ◽  
Hans-Michael Kaltenbach ◽  
Jörg Stelling

AbstractSynthetic biologists use and combine diverse biological parts to build systems such as genetic circuits that perform desirable functions in, for example, biomedical or industrial applications. Computer-aided design methods have been developed to help choose appropriate network structures and biological parts for a given design objective. However, they almost always model the behavior of the network in an average cell, despite pervasive cell-to-cell variability. Here, we present a computational framework to guide the design of synthetic biological circuits while accounting for cell-to-cell variability explicitly. Our design method integrates a NonLinear Mixed-Effect (NLME) framework into an existing algorithm for design based on ordinary differential equation (ODE) models. The analysis of a recently developed transcriptional controller demonstrates first insights into design guidelines when trying to achieve reliable performance under cell-to-cell variability. We anticipate that our method not only facilitates the rational design of synthetic networks under cell-to-cell variability, but also enables novel applications by supporting design objectives that specify the desired behavior of cell populations.


Author(s):  
Yun Ji ◽  
Songyong Liu ◽  
Dianrong Gao ◽  
Jianhua Zhao

Elbows are widely used in various industrial fields and are important for industrial applications. In this study, Eulerian coupling method was used to address the fluid-particle, and particle-particle interactions in a gas-solid two-phase flow while considering the effects of lifting angle, airflow velocity, and solid mass flow rate. The Hertz-Mindlin contact model and empirical Erosion/Corrosion Research Center erosion model were used to predict erosion in a lifting elbow, and the erosion ratio was used for validation with the experimental results. Experimental results indicated that the established model herein is accurate with different airflow velocities and lifting angles. The orthogonal design method was applied to the simulation scheme design, and range and variance analyses were used for the analysis of the results. Results indicated that the solid mass flow rate most affected elbow erosion comparing with lifting angles and airflow velocities. Additionally, the effect of the elbow lifting angle on the erosion mechanism was considered, and results indicated that the maximum erosion region is independent of the airflow velocity, lifting angle, and solid mass flow rate.


2012 ◽  
Vol 236-237 ◽  
pp. 1201-1204
Author(s):  
Qing Li Liu ◽  
Lei Shen ◽  
Albert Tsai ◽  
Su Fen Yao ◽  
Edmund Wang

Cam mechanisms are widely used in automated machines. Conjugate cams have become popular for its eminent kinematics and dynamic performance in research and in industry. As a commonly used cam mechanism in industry, especially in automatic pin insertion machines, conjugate cams have the advantages of being highly efficient, highly accurate and relatively cheap. A parametric simulation method was used to create a conjugate cam profile. This paper describes the steps used to create 3D models of the conjugate cam and the basic principles used to simulate the motion of cam mechanisms. The motion simulations were done with the parametric 3D modeling method using Creo Parametric Software.


2005 ◽  
Vol 127 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Hiroyuki Sugiyama ◽  
Nobuyuki Kobayashi ◽  
Yoshimasa Komaki

The nonlinear dynamics of a very flexible body with time-variant length encompasses several industrial applications such as high-speed automatic coiling machines and copy machines. Among others, the significant increase in the vibration that occurs when the material length is shortened with time is known as the spaghetti problem. In this paper, the modeling method and the experimental procedure for the analysis of the spaghetti problem are presented. The change in the state of the forces and displacements at the boundary with a clearance is taken into consideration by modeling the mechanical interactions resulting from the clearance. A flexible beam is modeled using the finite segment method to account for the geometric nonlinearities due to the large rotation. The contact forces at the boundary are modeled using a set of springs and dampers. The numerical results obtained using the proposed modeling method agree well with the results obtained using the experiment. The effect of the transport velocity and the clearance are demonstrated, and the cause of the significant increase in the flexible body vibration is discussed from an energy balance viewpoint.


2012 ◽  
Vol 166-169 ◽  
pp. 784-787
Author(s):  
Qing Li Liu ◽  
Albert Tsai ◽  
Su Fen Yao ◽  
Edmund Wang

Cam mechanisms are widely used in automated machines. Globoid cam has received widespread attention for its eminent kinematics and dynamic performance in research and application. As a commonly used cam mechanism in industry, especially in the field of industrial robots, Globoid Cam has the advantages of being highly efficient, highly accurate and relatively cheap. This study used ProEngineer to create a 3D model of the Globoid Cam mechanism. This paper describes the steps used to create a 3D model of the Globoid Cam, and the basic principles behind the parametric 3D modeling method.


2010 ◽  
Vol 459 ◽  
pp. 211-220 ◽  
Author(s):  
Takaaki Hagiwara ◽  
Kou Yamada ◽  
Iwanori Murakami ◽  
Yoshinori Ando ◽  
Shun Matsuura

PID(Proportional-Integral-Derivative) controller structure is the most widely used one in industrial applications. Yamada and Hagiwara proposed a design method for modified PID controllers such that modified PID controllers make the control system for unstable plants stable and the admissible sets of P-parameter, I-parameter and D-parameter are independent from each other. When modified PID control systems are applied to real plants, the influence of disturbance in the plant must be considered. In many cases, disturbance in the plant is unknown. It is comparatively easy to attenuate known disturbance, but it is difficult to attenuate unknown disturbances. From a practical viewpoint, it is desirable to design a modified PID control system to attenuate unknown disturbances. However, no paper examines a design method for modified PID control systems to attenuate unknown disturbances. In this paper, we propose a design method for modified PID control systems to attenuate unknown disturbances.


Sign in / Sign up

Export Citation Format

Share Document