Peptide–Gold Nanoparticle Hybrids as Promising Anti‐Inflammatory Nanotherapeutics for Acute Lung Injury: In Vivo Efficacy, Biodistribution, and Clearance

2018 ◽  
Vol 7 (19) ◽  
pp. 1800510 ◽  
Author(s):  
Ye Xiong ◽  
Wei Gao ◽  
Fan Xia ◽  
Yi Sun ◽  
Liya Sun ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Renyikun Yuan ◽  
Jia He ◽  
Liting Huang ◽  
Li-Jun Du ◽  
Hongwei Gao ◽  
...  

Acute lung injury (ALI) is an acute inflammatory process in the lung parenchyma. Anemoside B4 (B4) was isolated from Pulsatilla, a plant-based drug against inflammation and commonly applied in traditional Chinese medicine. However, the anti-inflammatory effect and the mechanisms of B4 are not clear. In this study, we explored the potential mechanisms and anti-inflammatory activity of B4 both in vitro and in vivo. The results indicated that B4 suppressed the expression of iNOS, COX-2, NLRP3, caspase-1, and IL-1β. The ELISA assay results showed that B4 significantly restrained the release of inflammatory cytokines like TNF-α, IL-6, and IL-1β in macrophage cells. In addition, B4 rescued mitochondrial membrane potential (MMP) loss in (lipopolysaccharide) LPS plus ATP stimulated macrophage cells. Co-IP and molecular docking results illustrated that B4 disrupted the dimerization of TLR4. For in vivo results, B4 exhibited a protective effect on LPS and bleomycin- (BLM-) induced ALI in mice through suppressing the lesions of lung tissues, the release of inflammatory cytokines, and the levels of white blood cells, neutrophils, and lymphoid cells in the blood. Collectively, B4 has a protective effect on ALI via blocking TLR4 dimerization and NLRP3 inflammasome activation, suggesting that B4 is a potential agent for the treatment of ALI.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yiyi Jin ◽  
Jianchang Qian ◽  
Xin Ju ◽  
Xiaodong Bao ◽  
Li Li ◽  
...  

Inflammation is a key factor in the pathogenesis of ALI. Therefore, suppression of inflammatory response could be a potential strategy to treat LPS-induced lung injury. Osthole, a natural coumarin extract, has been reported to protect against acute kidney injury through an anti-inflammatory mechanism, but its effect on ALI is poorly understood. In this study, we investigated whether osthole ameliorates inflammatory sepsis-related ALI. Results from in vitro studies indicated that osthole treatment inhibited the LPS-induced inflammatory response in mouse peritoneal macrophages through blocking the nuclear translocation of NF-κB. Consistently, the in vivo studies indicated that osthole significantly prolonged the survival of septic mice which was accompanied by inflammation suppression. In the ALI mouse model, osthole effectively inhibited the development of lung tissue injury, leukocytic recruitment, and cytokine productions, which was associated with inhibition of NF-κB nuclear translocation. These findings provide evidence that osthole was a potent inhibitor of NF-κB and inflammatory injury and suggest that it could be a promising anti-inflammatory agent for therapy of septic shock and acute lung injury.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seongchan Kim ◽  
Shin Young Kim ◽  
Seung Joon Rho ◽  
Seung Hoon Kim ◽  
So Hyang Song ◽  
...  

AbstractOxidative stress plays important roles in inflammatory responses during acute lung injury (ALI). Recently, nanoconstruct (Nano)-based drug-delivery systems have shown promise in many models of inflammation. In this study, we evaluated the anti-inflammatory effects of N-acetylcysteine (NAC) loaded in a biocompatible Nano using a rat model of ALI. We synthesized a Nano with a good NAC-releasing capacity using porous silica Nano, which was used to produce Nano/NAC complexes. For in vivo experiments, Sprague–Dawley rats were intraperitoneally administered NAC or Nano/NAC 30 min after intratracheal instillation of lipopolysaccharide. After 6 h, bronchoalveolar lavage fluids and lung tissues were collected. The anti-oxidative effect of the Nano/NAC complex was confirmed by demonstrating reduced levels of reactive oxygen species after treatment with the Nano/NAC in vitro. In vivo experiments also showed that the Nano/NAC treatment may protect against LPS‐induced ALI thorough anti‐oxidative and anti‐inflammatory effects, which may be attributed to the inactivation of the NF‐κB and MAPK pathways. In addition, the effects of Nano/NAC treatment were shown to be superior to those of NAC alone. We suggest the therapeutic potential of Nano/NAC treatment as an anti‐inflammatory agent against ALI. Furthermore, our study can provide basic data for developing nanotechnology-based pharmacotherapeutics for ALI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiyue Zhang ◽  
Li Du ◽  
Jinrong Zhang ◽  
Chunyan Li ◽  
Jie Zhang ◽  
...  

Acute lung injury (ALI) is a respiratory disease that leads to death in severe cases. Hordenine (Hor), a barley-derived natural product, has various biological activities, including anti-inflammatory, and anti-oxidation activities. We investigated the effect of Hor on lipopolysaccharide-induced ALI and its potential mechanism. The anti-inflammatory effects of Hor were detected using in vivo and in vitro models by enzyme-linked immunosorbent assay, real-time polymerase chain reaction, western blotting, and molecular docking simulations. Hor inhibited increases in the levels of inflammatory factors both in vivo and in vitro, and its anti-inflammatory effect inhibited activation of protein kinase B, nuclear factor-κB, and mitogen-activated protein kinase signaling. Hor alleviated lipopolysaccharide-induced ALI by inhibiting inflammatory cytokine increases in vivo and in vitro and shows potential for preventing inflammatory disease.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 429 ◽  
Author(s):  
Chuan-Mu Chen ◽  
Yu-Tang Tung ◽  
Chi-Hsuan Wei ◽  
Po-Ying Lee ◽  
Wei Chen

Acute lung injury (ALI), a common cause of morbidity and mortality in intensive care units, results from either direct intra-alveolar injury or indirect injury following systemic inflammation and oxidative stress. Adequate tissue oxygenation often requires additional supplemental oxygen. However, hyperoxia causes lung injury and pathological changes. Notably, preclinical data suggest that aspirin modulates numerous platelet-mediated processes involved in ALI development and resolution. Our previous study suggested that prehospital aspirin use reduced the risk of ALI in critically ill patients. This research uses an in vivo imaging system (IVIS) to investigate the mechanisms of aspirin’s anti-inflammatory and antioxidant effects on hyperoxia-induced ALI in nuclear factor κB (NF-κB)–luciferase transgenic mice. To define mechanisms through which NF-κB causes disease, we developed transgenic mice that express luciferase under the control of NF-κB, enabling real-time in vivo imaging of NF-κB activity in intact animals. An NF-κB-dependent bioluminescent signal was used in transgenic mice carrying the luciferase genes to monitor the anti-inflammatory effects of aspirin. These results demonstrated that pretreatment with aspirin reduced luciferase expression, indicating that aspirin reduces NF-κB activation. In addition, aspirin reduced reactive oxygen species expression, the number of macrophages, neutrophil infiltration and lung edema compared with treatment with only hyperoxia treatment. In addition, we demonstrated that pretreatment with aspirin significantly reduced the protein levels of phosphorylated protein kinase B, NF-κB and tumor necrosis factor α in NF-κB–luciferase+/+ transgenic mice. Thus, the effects of aspirin on the anti-inflammatory response and reactive oxygen species suppressive are hypothesized to occur through the NF-κB signaling pathway. This study demonstrated that aspirin exerts a protective effect for hyperoxia-induced lung injury and thus is currently the drug conventionally used for hyperoxia-induced lung injury.


2021 ◽  
Vol 17 (3) ◽  
pp. 466-476
Author(s):  
Qin Xu ◽  
Mengran Guo ◽  
Xiaodong Jin ◽  
Quansheng Jin ◽  
Zhongshan He ◽  
...  

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is an overwhelming pulmonary inflammation with limited clinical treatment strategies. Interferon regulatory factor 5 (IRF5) is a crucial regulator of inflammation factors, which can be upregulated under an inflammatory state and related to the efferocytosis of macrophages. Herein, IRF5 was knockdown by small interfering RNA (siIRF5) to promote the anti-inflammatory effect of macrophages. Macrophage-targeting cationic liposome modified by folate (FA-LP) was developed to deliver siIRF5 (FA-LP/siIRF5). Liposomes were characterized for their particle size, zeta potential, protein adsorption and hemolysis of red blood cells. The amount of IRF5 mRNA and the expression of IRF5 were measured using quantitative reverse transcription PCR (RT-qPCR) and western blot, respectively. The phenotype and efferocytosis of macrophages and the regulatory pathway of efferocytosis and biodistribution of liposomes in the ALI mice model were investigated. Data revealed that FA-LP/siIRF5 could obviously downregulate the expression of IRF5 in macrophages, skewing the polarization of macrophages to M2 phenotype (anti-inflammatory state) and thus improving their efferocytosis. Moreover, regulation of efferocytosis of macrophages by siIRF5 is related to the NF- B pathway. The in vivo biodistribution of FA-LP exhibited higher accumulation in the inflammatory lungs, suggesting that FA-LP could be considered as a promising gene delivery system and FA-LP/siIRF5 is an alternative strategy for the treatment of ALI/ARDS. To the best of our knowledge, this is the first study reporting that siIRF5 can be used for the treatment of ALI/ARDS.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yu Long ◽  
Yan Xiang ◽  
Songyu Liu ◽  
Yulu Zhang ◽  
Jinyan Wan ◽  
...  

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are challenging diseases with the high mortality in a clinical setting. Baicalin (BA) is the main effective constituent isolated from the Chinese medical herb Scutellaria baicalensis Georgi, and studies have proved that it has a protective effect on ALI induced by lipopolysaccharide (LPS) due to the anti-inflammatory efficacy. However, BA has low solubility which may limit its clinical application. Hence, we prepared a novel drug delivery system—Baicalin liposome (BA-LP) in previous research—which can improve some physical properties of BA. Therefore, we aimed to explore the effect of BA-LP on ALI mice induced by LPS. In pharmacokinetics study, the values of t 1 / 2 and AUC0- t in the BA-LP group were significantly higher than that of the BA group in normal mice, indicating that BA-LP could prolong the duration time in vivo of BA. The BA-LP group also showed a higher concentration in lung tissues than the BA group. Pharmacodynamics studies showed that BA-LP had a better effect than the BA group at the same dosage on reducing the W/D ratio, alleviating the lung injury score, and decreasing the proinflammatory factors (TNF-α, IL-1β) and total proteins in bronchoalveolar lavage fluids (BALF). In addition, the therapeutic effects of BA-LP showed a dose-dependent manner. Western blot analysis indicated that the anti-inflammatory action of BA could be attributed to the inhibition of the TLR4-NFκBp65 and JNK-ERK signaling pathways. These results suggest that BA-LP could be a valuable therapeutic candidate in the treatment of ALI.


2008 ◽  
Vol 115 (3) ◽  
pp. 91-97 ◽  
Author(s):  
Aimalohi Esechie ◽  
Levente Kiss ◽  
Gabor Olah ◽  
Eszter M. Horváth ◽  
Hal Hawkins ◽  
...  

Acute lung injury results in a severe inflammatory response, which leads to priming and activation of leucocytes, release of reactive oxygen and reactive nitrogen species, destruction of pulmonary endothelium, extravasation of protein-rich fluid into the interstitium and formation of oedema. Recently, H2S (hydrogen sulfide) has been shown to decrease the synthesis of pro-inflammatory cytokines, reduce leucocyte adherence to the endothelium and subsequent diapedesis of these cells from the microvasculature in in vivo studies, and to protect cells in culture from oxidative injury. In the present study, we hypothesized that a parenteral formulation of H2S would reduce the lung injury induced by burn and smoke inhalation in a novel murine model. H2S post-treatment significantly decreased mortality and increased median survival in mice. H2S also inhibited IL (interleukin)-1β levels and significantly increased the concentration of the anti-inflammatory cytokine IL-10 in lung tissue. Additionally, H2S administration attenuated protein oxidation following injury and improved the histological condition of the lung. In conclusion, these results suggest that H2S exerts protective effects in acute lung injury, at least in part through the activation of anti-inflammatory and antioxidant pathways.


Sign in / Sign up

Export Citation Format

Share Document