scholarly journals Nanotechnology‐based Strategies for Early Diagnosis of Central Nervous System (CNS) Disorders

2021 ◽  
pp. 2100008
Author(s):  
Sumaira Hanif ◽  
Pir Muhammad ◽  
Zheng Niu ◽  
Muhammad Ismail ◽  
Marco Morsch ◽  
...  
Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1730
Author(s):  
Masashi Fujitani ◽  
Yoshinori Otani ◽  
Hisao Miyajima

Neurotrophins (NTs) are one of the most characterized neurotrophic factor family members and consist of four members in mammals. Growing evidence suggests that there is a complex inter- and bi-directional relationship between central nervous system (CNS) disorders and cardiac dysfunction, so-called “brain–heart axis”. Recent studies suggest that CNS disorders, including neurodegenerative diseases, stroke, and depression, affect cardiovascular function via various mechanisms, such as hypothalamic–pituitary–adrenal axis augmentation. Although this brain–heart axis has been well studied in humans and mice, the involvement of NT signaling in the axis has not been fully investigated. In the first half of this review, we emphasize the importance of NTs not only in the nervous system, but also in the cardiovascular system from the embryonic stage to the adult state. In the second half, we discuss the involvement of NTs in the pathogenesis of cardiovascular diseases, and then examine whether an alteration in NTs could serve as the mediator between neurological disorders and heart dysfunction. The further investigation we propose herein could contribute to finding direct evidence for the involvement of NTs in the axis and new treatment for cardiovascular diseases.


2013 ◽  
Vol 1 (4) ◽  
Author(s):  
Antonio Claudio Tedesco ◽  
Andrielle Castilho-Fernandes ◽  
Tácila Gabriele Lopes

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Jenna Bloemer ◽  
Priyanka D. Pinky ◽  
Manoj Govindarajulu ◽  
Hao Hong ◽  
Robert Judd ◽  
...  

Adiponectin, the most abundant plasma adipokine, plays an important role in the regulation of glucose and lipid metabolism. Adiponectin also possesses insulin-sensitizing, anti-inflammatory, angiogenic, and vasodilatory properties which may influence central nervous system (CNS) disorders. Although initially not thought to cross the blood-brain barrier, adiponectin enters the brain through peripheral circulation. In the brain, adiponectin signaling through its receptors, AdipoR1 and AdipoR2, directly influences important brain functions such as energy homeostasis, hippocampal neurogenesis, and synaptic plasticity. Overall, based on its central and peripheral actions, recent evidence indicates that adiponectin has neuroprotective, antiatherogenic, and antidepressant effects. However, these findings are not without controversy as human observational studies report differing correlations between plasma adiponectin levels and incidence of CNS disorders. Despite these controversies, adiponectin is gaining attention as a potential therapeutic target for diverse CNS disorders, such as stroke, Alzheimer’s disease, anxiety, and depression. Evidence regarding the emerging role for adiponectin in these disorders is discussed in the current review.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Peiqing Chen ◽  
Wenjuan Zhao ◽  
Yanjie Guo ◽  
Juan Xu ◽  
Ming Yin

CX3C chemokine ligand 1 (CX3CL1) is an intriguing chemokine belonging to the CX3C family. CX3CL1 is secreted by neurons and plays an important role in modulating glial activation in the central nervous system after binding to its sole receptor CX3CR1 which mainly is expressed on microglia. Emerging data highlights the beneficial potential of CX3CL1-CX3CR1 in the pathogenesis of Alzheimer’s disease (AD), a common progressive neurodegenerative disease, and in the progression of which neuroinflammation plays a vital role. Even so, the importance of CX3CL1/CX3CR1 in AD is still controversial and needs further clarification. In this review, we make an attempt to present a concise map of CX3CL1-CX3CR1 associated with AD to find biomarkers for early diagnosis or therapeutic interventions.


2008 ◽  
Vol 24 (3-4) ◽  
pp. E11 ◽  
Author(s):  
Diana Yu ◽  
Gabriel A. Silva

✓ In the past decades, stem cell biology has made a profound impact on our views of mammalian development as well as opened new avenues in regenerative medicine. The potential of stem cells to differentiate into various cell types of the body is the principal reason they are being explored in treatments for diseases in which there may be dysfunctional cells and/or loss of healthy cells due to disease. In addition, other properties are unique to stem cells; their endogenous trophic support, ability to home to sites of pathological entities, and stability in culture, which allows genetic manipulation, are also being utilized to formulate stem cell–based therapy for central nervous system (CNS) disorders. In this review, the authors will review key characteristics of embryonic and somatic (adult) stem cells, consider therapeutic strategies employed in stem cell therapy, and discuss the recent advances made in stem cell–based therapy for a number of progressive neurodegenerative diseases in the CNS as well as neuronal degeneration secondary to other abnormalities and injuries. Although a great deal of progress has been made in our knowledge of stem cells and their utility in treating CNS disorders, much still needs to be elucidated regarding the biology of the stem cells and the pathogenesis of targeted CNS diseases to maximize therapeutic benefits. Nonetheless, stem cells present tremendous promise in the treatment of a variety of neurodegenerative diseases.


2001 ◽  
Vol XXXIII (3-4) ◽  
pp. 71-77
Author(s):  
I. G. Salikhov ◽  
E. I. Bogdanov ◽  
A. T. Zabbarova

Cerebral vasculitis (CV) is a severe, potentially disabling disease that usually develops in the presence of rheumatic, infectious, medicinal, or malignant diseases. In rare cases, isolated (primary) vasculitis of the central nervous system (CNS) is observed [17, 33]. The complex pathogenesis, polymorphism of clinical manifestations, and the absence in most cases of reliable non-invasive diagnostic criteria for CV complicate early diagnosis and treatment. In this regard, it seems relevant to analyze the features of clinical manifestations and diagnostic capabilities in cerebrovascular pathology caused by vasculitis.


Author(s):  
Josef Finsterer ◽  
Claudia Stöllberger

<p>Takotsubo syndrome (TTS) is usually triggered by psychological or physical stress. One of the many physical sources of stress are central nervous system (CNS) disorders. CNS disorders most frequently triggering TTS include subarachnoid bleeding, epilepsy, ischemic stroke, migraine, and intracerebral bleeding. More rare CNS-triggers of TTS include posterior reversible encephalopathy syndrome (PRES), amyotrophic lateral sclerosis, encephalitis, or traumatic brain or spinal cord injury. TTS triggered by any of the CNS disorders needs to be recognized since adequate treatment of TTS may improve the general outcome from the CNS disorder as well. Neurologists need to be aware of TTS as a complication of specific CNS disorders but TTS may be triggered also by CNS disorders so far not recognised as causes of TTS.</p>


2020 ◽  
Vol 19 ◽  
pp. 153601212092760
Author(s):  
Hamideh Zarrinmayeh ◽  
Paul R. Territo

Purinergic receptors play important roles in central nervous system (CNS). These receptors are involved in cellular neuroinflammatory responses that regulate functions of neurons, microglial and astrocytes. Based on their endogenous ligands, purinergic receptors are classified into P1 or adenosine, P2X and P2Y receptors. During brain injury or under pathological conditions, rapid diffusion of extracellular adenosine triphosphate (ATP) or uridine triphosphate (UTP) from the damaged cells, promote microglial activation that result in the changes in expression of several of these receptors in the brain. Imaging of the purinergic receptors with selective Positron Emission Tomography (PET) radioligands has advanced our understanding of the functional roles of some of these receptors in healthy and diseased brains. In this review, we have accumulated a list of currently available PET radioligands of the purinergic receptors that are used to elucidate the receptor functions and participations in CNS disorders. We have also reviewed receptors lacking radiotracer, laying the foundation for future discoveries of novel PET radioligands to reveal these receptors roles in CNS disorders.


Author(s):  
Lin Qiu ◽  
Hao Jiang ◽  
Yanbo Yu ◽  
Jiwei Gu ◽  
Jinzhi Wang ◽  
...  

Assessment of Sphingosine-1-phosphate receptor 1 (S1PR1) expression could be a unique tool to determine the neuroinflammatory status for central nervous system (CNS) disorders. Our preclinical results indicate that PET imaging...


Sign in / Sign up

Export Citation Format

Share Document