Highly stable electrochromic cells based on amorphous tungsten oxides prepared using a solution‐annealing process

Author(s):  
Tuan Van Nguyen ◽  
Kim Anh Huynh ◽  
Quyet Van Le ◽  
Hayeong Kim ◽  
Sang Hyun Ahn ◽  
...  
2017 ◽  
Vol 62 (3) ◽  
pp. 1889-1894 ◽  
Author(s):  
V. Vishnuh ◽  
S. Sudhakar ◽  
K. Tamilarasu ◽  
P. Prabhakaran ◽  
R. Rajasekar

AbstractIn the present work the effect of nitrogen on WC9 alloy at various weight percentages was analyzed and tested for their microstructural and mechanical properties. The nitrogen was added at 0.05, 0.10, 0.15, 0.20 and 0.25 wt. % in the solid form as nitrided ferrochrome to WC9 alloy. The samples were heat treated by solution annealing process at a temperature of 1100°C for 5 hours to improve the austenitic formation. Microstructures and mechanical properties such as tensile strength, yield strength, hardness, % elongation and % reduction of WC9-N alloy were examined. It was observed that increasing nitrogen wt. % increases the mechanical properties. The obtained mechanical properties were compared with base WC9 and C12A grade steel, where it was found to be replacement for C12A grade steel at its composition at lower end. The material cost analysis for WC9-N and C12A grade steel was done and both were compared.


Author(s):  
R. A. Etien ◽  
S. R. Gordon ◽  
G. O. Ilevbare

The effect of solution annealing on localized corrosion resistance of Alloy 22 was studied in electrolytes of varying composition. The experiments were carried out on Alloy 22 specimens with the resultant thick dark brown oxide film from the solution annealing process still intact. The effect of solution annealing on the localized corrosion resistance of Alloy 22 was found to be electrolyte specific within the temperature range investigated.


1994 ◽  
Vol 04 (02n03) ◽  
pp. 193-200
Author(s):  
T. NAKAE ◽  
R. TAKAHASHI ◽  
T. NOMURA ◽  
Y. NAKAI ◽  
H. KAGEYAMA ◽  
...  

The characterization of the single crystal of type 304 stainless steels was performed by using particle induced x-ray emission and Rutherford backscattering spectroscopy with channeling technique (PIXE-C and RBS-C). They proved that the solution annealing process is absolutely necessary for production of a good single crystal of stainless steels. They are also shown that the positions of P atoms before He irradiation were mostly substitutional sites of fcc structure and that MeV He ion irradiation induced segregation of Si and S atoms to the (110) surface.


2020 ◽  
Vol 4 (2) ◽  
pp. 48-55
Author(s):  
A. S. Jamaludin ◽  
M. N. M. Razali ◽  
N. Jasman ◽  
A. N. A. Ghafar ◽  
M. A. Hadi

The gripper is the most important part in an industrial robot. It is related with the environment around the robot. Today, the industrial robot grippers have to be tuned and custom made for each application by engineers, by searching to get the desired repeatability and behaviour. Vacuum suction is one of the grippers in Watch Case Press Production (WCPP) and a mechanism to improve the efficiency of the manufacturing procedure. Pick and place are the important process for the annealing process. Thus, by implementing vacuum suction gripper, the process of pick and place can be improved. The purpose of vacuum gripper other than design vacuum suction mechanism is to compare the effectiveness of vacuum suction gripper with the conventional pick and place gripper. Vacuum suction gripper is a mechanism to transport part and which later sequencing, eliminating and reducing the activities required to complete the process. Throughout this study, the process pick and place became more effective, the impact on the production of annealing process is faster. The vacuum suction gripper can pick all part at the production which will lower the loss of the productivity. In conclusion, vacuum suction gripper reduces the cycle time about 20%. Vacuum suction gripper can help lower the cycle time of a machine and allow more frequent process in order to increase the production flexibility.


2011 ◽  
Vol 19 (4) ◽  
pp. 341
Author(s):  
Joel Díaz Reyes ◽  
Aarón Pérez-Benítez ◽  
Valentín Dorantes

<span>Tungsten(VI) oxide can be easily synthesized starting from a standard light bulb. The reaction consists in the oxidation at high temperatures (T ≈ 2000 – 3000° C) of a tungsten filament in presence of air; conditions which can be easily achieved by connecting a broken light bulb (but with its intact filament) to an AC-power supply of 110 volts. The vapor of WO3 is condensed into a beaker in a quantity enough to be characterized by infrared spectroscopy. The experiment is very funny, inexpensive and allows to the teacher to link several topics in current chemistry and physics of the tungsten oxides, such as their nomenclature and technological applications (i.e. electrochromic devices, gasochromic sensors, superalloys or as it is used in home: As a “simple” emisor of light!).</span>


2021 ◽  
Vol 64 (6) ◽  
Author(s):  
Zhiqiang Cao ◽  
Yiming Wei ◽  
Wenjing Chen ◽  
Shaohua Yan ◽  
Lin Lin ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 88
Author(s):  
Diana García-Pérez ◽  
Maria Consuelo Alvarez-Galvan ◽  
Jose M. Campos-Martin ◽  
Jose L. G. Fierro

Catalysts based on zirconia- and alumina-supported tungsten oxides (15 wt % W) with a small loading of platinum (0.3 wt % Pt) were selected to study the influence of the reduction temperature and the nature of the support on the hydroisomerization of n-dodecane. The reduction temperature has a major influence on metal dispersion, which impacts the catalytic activity. In addition, alumina and zirconia supports show different catalytic properties (mainly acid site strength and surface area), which play an important role in the conversion. The NH3-TPD profiles indicate that the acidity in alumina-based catalysts is clearly higher than that in their zirconia counterparts; this acidity can be attributed to a stronger interaction of the WOx species with alumina. The PtW/Al catalyst was found to exhibit the best catalytic performance for the hydroisomerization of n-dodecane based on its higher acidity, which was ascribed to its larger surface area relative to that of its zirconia counterparts. The selectivity for different hydrocarbons (C7–10, C11 and i-C12) was very similar for all the catalysts studied, with branched C12 hydrocarbons being the main products obtained (~80%). The temperature of 350 °C was clearly the best reduction temperature for all the catalysts studied in a trickled-bed-mode reactor.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 131
Author(s):  
Tingting Xiao ◽  
Qi Yang ◽  
Jian Yu ◽  
Zhengwei Xiong ◽  
Weidong Wu

FePt nanoparticles (NPs) were embedded into a single-crystal MgO host by pulsed laser deposition (PLD). It was found that its phase, microstructures and physical properties were strongly dependent on annealing conditions. Annealing induced a remarkable morphology variation in order to decrease its total free energy. H2/Ar (95% Ar + 5% H2) significantly improved the L10 ordering of FePt NPs, making magnetic coercivity reach 37 KOe at room temperature. However, the samples annealing at H2/Ar, O2, and vacuum all showed the presence of iron oxide even with the coverage of MgO. MgO matrix could restrain the particles’ coalescence effectively but can hardly avoid the oxidation of Fe since it is extremely sensitive to oxygen under the high-temperature annealing process. This study demonstrated that it is essential to anneal FePt in a high-purity reducing or ultra-high vacuum atmosphere in order to eliminate the influence of oxygen.


Sign in / Sign up

Export Citation Format

Share Document