scholarly journals The climatic water balance captures evolving water resources pressures on the margins of the Himalaya

2021 ◽  
Author(s):  
Nathan Daniel Forsythe ◽  
Prakash Chandra Tiwari ◽  
David M.W. Pritchard ◽  
David W Walker ◽  
Bhagwati Joshi ◽  
...  
Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 38
Author(s):  
Nick Martin

Climate and land use and land cover (LULC) changes will impact watershed-scale water resources. These systemic alterations will have interacting influences on water availability. A probabilistic risk assessment (PRA) framework for water resource impact analysis from future systemic change is described and implemented to examine combined climate and LULC change impacts from 2011–2100 for a study site in west-central Texas. Internally, the PRA framework provides probabilistic simulation of reference and future conditions using weather generator and water balance models in series—one weather generator and water balance model for reference and one of each for future conditions. To quantify future conditions uncertainty, framework results are the magnitude of change in water availability, from the comparison of simulated reference and future conditions, and likelihoods for each change. Inherent advantages of the framework formulation for analyzing future risk are the explicit incorporation of reference conditions to avoid additional scenario-based analysis of reference conditions and climate change emissions scenarios. In the case study application, an increase in impervious area from economic development is the LULC change; it generates a 1.1 times increase in average water availability, relative to future climate trends, from increased runoff and decreased transpiration.


Science ◽  
2021 ◽  
pp. eabf3668
Author(s):  
Mohd. Farooq Azam ◽  
Jeffrey S. Kargel ◽  
Joseph M. Shea ◽  
Santosh Nepal ◽  
Umesh K. Haritashya ◽  
...  

Understanding the response of Himalayan-Karakoram (HK) rivers to climate change is crucial for ~1 billion people who partly depend on these water resources. Policymakers tasked with the sustainable water resources management for agriculture, hydropower, drinking, sanitation, and hazards require an assessment of rivers’ current status and potential future changes. This review demonstrates that glacier and snow melt are important components of HK rivers, with greater hydrological importance for the Indus than Ganges and Brahmaputra basins. Total river runoff, glacier melt, and seasonality of flow are projected to increase until the 2050s, with some exceptions and large uncertainties. Critical knowledge gaps severely affect modeled contributions of different runoff components, future runoff volumes and seasonality. Therefore, comprehensive field- and remote sensing-based methods and models are needed.


2016 ◽  
Vol 20 (7) ◽  
pp. 2877-2898 ◽  
Author(s):  
Hannes Müller Schmied ◽  
Linda Adam ◽  
Stephanie Eisner ◽  
Gabriel Fink ◽  
Martina Flörke ◽  
...  

Abstract. When assessing global water resources with hydrological models, it is essential to know about methodological uncertainties. The values of simulated water balance components may vary due to different spatial and temporal aggregations, reference periods, and applied climate forcings, as well as due to the consideration of human water use, or the lack thereof. We analyzed these variations over the period 1901–2010 by forcing the global hydrological model WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate data sets, including a homogenized version of the concatenated WFD/WFDEI data set. Absolute values and temporal variations of global water balance components are strongly affected by the uncertainty in the climate forcing, and no temporal trends of the global water balance components are detected for the four homogeneous climate forcings considered (except for human water abstractions). The calibration of WaterGAP against observed long-term average river discharge Q significantly reduces the impact of climate forcing uncertainty on estimated Q and renewable water resources. For the homogeneous forcings, Q of the calibrated and non-calibrated regions of the globe varies by 1.6 and 18.5 %, respectively, for 1971–2000. On the continental scale, most differences for long-term average precipitation P and Q estimates occur in Africa and, due to snow undercatch of rain gauges, also in the data-rich continents Europe and North America. Variations of Q at the grid-cell scale are large, except in a few grid cells upstream and downstream of calibration stations, with an average variation of 37 and 74 % among the four homogeneous forcings in calibrated and non-calibrated regions, respectively. Considering only the forcings GSWP3 and WFDEI_hom, i.e., excluding the forcing without undercatch correction (PGFv2.1) and the one with a much lower shortwave downward radiation SWD than the others (WFD), Q variations are reduced to 16 and 31 % in calibrated and non-calibrated regions, respectively. These simulation results support the need for extended Q measurements and data sharing for better constraining global water balance assessments. Over the 20th century, the human footprint on natural water resources has become larger. For 11–18% of the global land area, the change of Q between 1941–1970 and 1971–2000 was driven more strongly by change of human water use including dam construction than by change in precipitation, while this was true for only 9–13 % of the land area from 1911–1940 to 1941–1970.


2013 ◽  
Vol 7 (3) ◽  
pp. 379-385

The decrease of available water resources, the water quality degradation as well as the rapid increase of population combined with the growth of human activities, impose today the development of a science that concerns the Management of Water Resources. Lake Volvi faces a lot of problems, the most important being the water level drop, which is mostly due to the big quantities of water flowing through to Rihios River and to the wrong management of irrigation water. The study area of the present research consists of the watershed of Lake Volvi, situated in Northern Greece, 39 km away from the city of Thessaloniki. The objective of this study is the estimation of the water balance of the hydrologic basin of Lake Volvi with a Corporate Management program, using Visual Fortran and the creation of scenarios for better management of the water resources of the region. Lake Volvi is situated next to Lake Koronia, both of them belonging to a wider region that forms the geological basin of Mygdonia. Lake Volvi is the recipient of the water draining from Lake Koronia. The water that drains from Lake Volvi is discharged into the gulf of Strymonikos through Rihios River. Firstly, a close analysis is attempted for the estimation of the water balance of the entire hydrologic basin of Lake Volvi with the method of Turc, which is used widely throughout the world. Next, in order to simulate the lake, an administrative model is used, written in Visual Fortran. A rational management of the hydrological elements of the region is attempted with the creation of four alternative scenarios. After the execution of the Corporate Management program, the results show that the main problem for Lake Volvi is the water leaking to Rihios River. Moreover, the research also shows that it is important to reduce the water used for irrigation. As a final result, it is an imperative need to develop water resources management plans for the restoration of the entire region.


Author(s):  
Vadim Yapiyev ◽  
Kanat Samarkhanov ◽  
Dauren Zhumabayev ◽  
Nazym Tulegenova ◽  
Saltanat Jumassultanova ◽  
...  

Both climate change and anthropogenic activities contribute to the deterioration of terrestrial water resources and ecosystems worldwide. Central Asian endorheic basins are among the most affected regions through both climate and human impacts. Here, we used a digital elevation model, digitized bathymetry maps and Landsat images to estimate the areal water cover extent and volumetric storage changes in small terminal lakes in Burabay National Nature Park (BNNP), located in Northern Central Asia (CA), for the period of 1986 to 2016. Based on the analysis of long-term climatic data from meteorological stations, short-term hydrometeorological network observations, gridded climate datasets (CRU) and global atmospheric reanalysis (ERA Interim), we have evaluated the impacts of historical climatic conditions on the water balance of BNNP lake catchments. We also discuss the future based on regional climate model projections. We attribute the overall decline of BNNP lakes to long-term deficit of water balance with lake evaporation loss exceeding precipitation inputs. Direct anthropogenic water abstraction has a minor importance in water balance. However, the changes in watersheds caused by the expansion of human settlements and roads disrupting water drainage may play a more significant role in lake water storage decline. More precise water resources assessment at the local scale will be facilitated by further development of freely available higher spatial resolution remote sensing products. In addition, the results of this work can be used for the development of lake/reservoir evaporation models driven by remote sensing and atmospheric reanalysis data without the direct use of ground observations.


2022 ◽  
Author(s):  
Rana Salim Abou Slaymane ◽  
M. Reda Soliman

Abstract The impacts of the growing population at Lebanon including Lebanese, Palestinian and Syrian refugees, associated with the changing climate parameters such that the precipitation are putting the Bekaa Valley’s water resources in a stymie situation. The water resources are under significant stress limiting the water availability and deteriorating the water quality at the Upper Litani River Basin (ULRB) within the Bekaa Valley region. These impacts are assessed by Water Evaluation And Planning model to assure the water balance and quality at baseline scenario in 2013, and future scenarios reaching 2095, serving by the Watershed Modeling System to get the flow throughout the Litani River’s ungauged zones. Moreover, a General Circulation Model is used to predict the future climate up to 2100 under several emissions scenarios which shows a critical situation at the high emission scenario where the precipitation will be reduced about 87 mm from 2013 to 2095. The aim of this research is to reduce the water pollution that limits the availability of usable water, and to minimize the gap between the demand and supply of water within the ULRB in order to maintain water resources sustainability, and preserves its quality, even after 80 years. In particular, this may be achieved by removing encroachments on the river, by adding waste water treatment plants, by reducing the amount of lost water in damaged water network, and by avoiding the overconsumption of groundwater.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1418
Author(s):  
Elisabet Carpintero ◽  
Ana Andreu ◽  
Pedro J. Gómez-Giráldez ◽  
Ángel Blázquez ◽  
María P. González-Dugo

Mediterranean oak savannas (known as dehesas in Spain) are exposed to numerous threats from natural and economic causes. A close monitoring of the use of water resources and the status of the vegetation in these ecosystems can be useful tools for maintaining the production of ecological services. This study explores the estimation of evapotranspiration (ET) and water stress over a dehesa by integrating remotely sensed data into a water balance using the FAO-56 approach (VI-ETo model). Special attention is paid to the different phenology and contribution to the system’s hydrology of the two main canopy layers of the system (tree + grass). The results showed that the model accurately reproduced the dynamics of the water consumed by the vegetation, with RMSE of 0.47 mm day−1 and low biases for both, the whole system and the grass layer, when compared with flux tower measurements. The ET/ETo ratio helped to identify periods of water stress, confirmed for the grassland by measured soil water content. The modeling scheme and Sentinel-2 temporal resolution allowed the reproduction of fast and isolated ET pulses, important for understanding the hydrologic behavior of the system, confirming the adequacy of this sensor for monitoring grasslands water dynamics.


2019 ◽  
Vol 11 (24) ◽  
pp. 7083 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Mariele Evers ◽  
Britta Höllermann ◽  
Stefanie Steinbach ◽  
...  

Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6–8% for the LULC scenarios, whereas high flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development.


Sign in / Sign up

Export Citation Format

Share Document