Scale and climate regulation as a conservation incentive

2020 ◽  
Vol 18 (8) ◽  
pp. 429-430 ◽  
Author(s):  
Christian O Marks ◽  
Edenise Garcia ◽  
Jose Paulo Molin

Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 432
Author(s):  
Robin Gutting ◽  
Ralf-Uwe Syrbe ◽  
Karsten Grunewald ◽  
Ulf Mehlig ◽  
Véronique Helfer ◽  
...  

Mangrove forests provide a large variety of ecosystem services (ES) to coastal societies. Using a case study focusing on the Ajuruteua peninsula in Northern Brazil and two ES, food provisioning (ES1) and global climate regulation (ES2), this paper proposes a new framework for quantifying and valuing mangrove ES and allow for their small-scale mapping. We modelled and spatialised the two ES from different perspectives, the demand (ES1) and the supply (ES2) side respectively. This was performed by combining worldwide databases related to the global human population (ES1) or mangrove distribution and canopy height (ES2) with locally derived parameters, such as crab catches (ES1) or species-specific allometric equations based on local estimates of tree structural parameters (ES2). Based on this approach, we could estimate that the area delivers the basic nutrition of about 1400 households, which equals 2.7 million USD, and that the mangrove biomass in the area contains 2.1 million Mg C, amounting to 50.9 million USD, if it were paid as certificates. In addition to those figures, we provide high-resolution maps showing which areas are more valuable for the two respective ES, information that could help inform management strategies in the future.



Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Obulisamy Parthiba Karthikeyan ◽  
Thomas J. Smith ◽  
Shamsudeen Umar Dandare ◽  
Kamaludeen Sara Parwin ◽  
Heetasmin Singh ◽  
...  

AbstractManufacturing and resource industries are the key drivers for economic growth with a huge environmental cost (e.g. discharge of industrial effluents and post-mining substrates). Pollutants from waste streams, either organic or inorganic (e.g. heavy metals), are prone to interact with their physical environment that not only affects the ecosystem health but also the livelihood of local communities. Unlike organic pollutants, heavy metals or trace metals (e.g. chromium, mercury) are non-biodegradable, bioaccumulate through food-web interactions and are likely to have a long-term impact on ecosystem health. Microorganisms provide varied ecosystem services including climate regulation, purification of groundwater, rehabilitation of contaminated sites by detoxifying pollutants. Recent studies have highlighted the potential of methanotrophs, a group of bacteria that can use methane as a sole carbon and energy source, to transform toxic metal (loids) such as chromium, mercury and selenium. In this review, we synthesise recent advances in the role of essential metals (e.g. copper) for methanotroph activity, uptake mechanisms alongside their potential to transform toxic heavy metal (loids). Case studies are presented on chromium, selenium and mercury pollution from the tanneries, coal burning and artisanal gold mining, respectively, which are particular problems in the developing economy that we propose may be suitable for remediation by methanotrophs.



Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1845
Author(s):  
Andreas Zehnsdorf ◽  
Keani C. U. Willebrand ◽  
Ralf Trabitzsch ◽  
Sarah Knechtel ◽  
Michael Blumberg ◽  
...  

While constructed wetlands have become established for the decentralized treatment of wastewater and rainwater, wetland roofs have only been built in isolated cases up to now. The historical development of wetland roofs is described here on the basis of a survey of literature and patents, and the increasing interest in this ecotechnology around the world is presented. In particular, this article describes the potential for using wetland roofs and examines experience with applications in decentralized water management in urban environments and for climate regulation in buildings. Wetland roofs are suitable as a green-blue technology for the future—particularly in cities with an acute shortage of unoccupied ground-level sites—for the decentralized treatment of wastewater streams of various origins. Positive “side effects” such as nearly complete stormwater retention and the improvement of climates in buildings and their surroundings, coupled with an increase in biodiversity, make wetland roofs an ideal multi-functional technology for urban areas.



2017 ◽  
Vol 53 (4) ◽  
pp. 3197-3223 ◽  
Author(s):  
Christina P. Wong ◽  
Bo Jiang ◽  
Theodore J. Bohn ◽  
Kai N. Lee ◽  
Dennis P. Lettenmaier ◽  
...  


Land ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 101 ◽  
Author(s):  
Janis Arnold ◽  
Janina Kleemann ◽  
Christine Fürst

Urban ecosystem services (ES) contribute to the compensation of negative effects caused by cities by means of, for example, reducing air pollution and providing cooling effects during the summer time. In this study, an approach is described that combines the regional biotope and land use data set, hemeroby and the accessibility of open space in order to assess the provision of urban ES. Hemeroby expresses the degree of naturalness of land use types and, therefore, provides a differentiated assessment of urban ES. Assessment of the local capacity to provide urban ES was conducted with a spatially explicit modeling approach in the city of Halle (Saale) in Germany. The following urban ES were assessed: (a) global climate regulation, (b) local climate regulation, (c) air pollution control, (d) water cycle regulation, (e) food production, (f) nature experience and (g) leisure activities. We identified areas with high and low capacity of ES in the urban context. For instance, the central parts of Halle had very low or no capacity to provide ES due to highly compact building styles and soil sealing. In contrast, peri-urban areas had particularly high capacities. The potential provision of regulating services was spatially limited due to the location of land use types that provide these services.



2017 ◽  
Vol 5 (1) ◽  
pp. 73-83
Author(s):  
Laszló Toth ◽  
Balint Horvath ◽  
Zsolt Fulop ◽  
Csaba Fogarassy

Abstract The most notable role in the energy usage of rearing-related buildings belongs to barn climate. For animals, one of the most important climate parameter is the temperature of the barn atmosphere. This can be kept in the proper interval by either heating or cooling. Apart from the operation of technological solutions, the need for airing barns must be taken into consideration. This means there are special technical requirements for airing. Also, they can cause significant energy losses. The temperature limit of heating is mainly influenced by the technological temperature related to keeping the animal in question, its acceptable differences, the heat loss of the barn, and the airing requirement. Energy sources applicable to heating can be traditional sources (coal, oil, gas), renewable sources (solar, biomass, wind, water, or geothermal energy), or transformed energy (electricity). As these have specific operation systems, they also mean further challenges in implementing efficient energy usage. The usage of heating energy can either be optimised by the rational usage of the heating system, or machinery explicitly made for reserving energy. Sparing heating energy via recuperative heating exchange may cut costs significantly, which we also proved in this research with actual calculations. However, we have to state that the efficient usage of heat exchangers requires that the internal and external temperatures differ greatly, which has a huge impact on heat recovery performance.



2013 ◽  
Vol 23 (8) ◽  
pp. 1869-1880 ◽  
Author(s):  
Eugénie S. Euskirchen ◽  
Eban S. Goodstein ◽  
Henry P. Huntington


2012 ◽  
Vol 9 (8) ◽  
pp. 3113-3130 ◽  
Author(s):  
D. Lombardozzi ◽  
S. Levis ◽  
G. Bonan ◽  
J. P. Sparks

Abstract. Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3) concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera) in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM) to determine the impacts on gross primary productivity (GPP) and transpiration at a constant O3 concentration of 100 parts per billion (ppb). Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.



2007 ◽  
Vol 4 (3) ◽  
pp. 183 ◽  
Author(s):  
Thomas G. Bell ◽  
Martin T. Johnson ◽  
Timothy D. Jickells ◽  
Peter S. Liss

Environmental context. Quantifying ammonia concentrations in natural waters is important for our understanding of environmental processes that relate, in particular, to aquaculture toxicity and to the transfer of gaseous ammonia into the atmosphere where it plays a role in new particle formation and climate regulation. The proportion of ammonia present in natural waters is determined in part by variations in temperature and salinity. This work identifies that a previous equation for predicting ammonia concentrations over natural temperature and salinity ranges is incorrect and suggests alternative, more appropriate equations. A more accurate estimation of environmental ammonia concentrations is essential if improved estimates are to be made of the flux of ammonia into the atmosphere and the level of ammonia toxicity within aquacultures. Abstract. The equilibrium between ammonia (NH3) and ammonium (NH4+) in aqueous solution is a function of temperature, pH and the ionic strength of the solution. Here we reveal a 30-year-old error in published work on the thermodynamics of ammonium dissociation in seawater, which has propagated throughout the literature. The work in question[1] [K. H. Khoo, C. H. Culberson, R. G. Bates, J. Solution Chem. 1977, 6, 281] presents an incorrect expression for the variation of the acid dissociation coefficient (Ka) of ammonium with temperature and ionic strength. We detail the error and reveal that it can lead to as much as a 500% overestimation in calculated NH3 concentration under environmental conditions. This finding is highly relevant, particularly for studies of ammonia toxicity and air–sea ammonia exchange. In addition, we recommend two expressions that better reproduce previous experimental work: (i) taken from the work of Johansson and Wedborg,[2] and (ii) our own derivation using the dataset of Khoo et al.[1]



Sign in / Sign up

Export Citation Format

Share Document