scholarly journals Versatility of unsaturated polyesters from electrospun macrolactones: RGD immobilization to increase cell attachment

Author(s):  
Fernando Cabral Sales Oliveira ◽  
Ronaldo Jose Farias Correa Amaral ◽  
Luiza Erthal Cardoso Santos ◽  
Cian Cummins ◽  
Michael M. Morris ◽  
...  
Author(s):  
Etienne de Harven ◽  
Nina Lampen

Samples of heparinized blood, or bone marrow aspirates, or cell suspensions prepared from biopsied tissues (nodes, spleen, etc. ) are routinely prepared, after Ficoll-Hypaque concentration of the mononuclear leucocytes, for scanning electron microscopy. One drop of the cell suspension is placed in a moist chamber on a poly-l-lysine pretreated plastic coverslip (Mazia et al., J. Cell Biol. 66:198-199, 1975) and fifteen minutes allowed for cell attachment. Fixation, started in 2. 5% glutaraldehyde in culture medium at room temperature for 30 minutes, is continued in the same fixative at 4°C overnight or longer. Ethanol dehydration is immediately followed by drying at the critical point of CO2 or of Freon 13. An efficient alternative method for ethanol dehydrated cells is to dry the cells at low temperature (-75°C) under vacuum (10-2 Torr) for 30 minutes in an Edwards-Pearse freeze-dryer (de Harven et al., SEM/IITRI/1977, 519-524). This is preceded by fast quenching in supercooled ethanol (between -90 and -100°C).


Author(s):  
W. Shain ◽  
H. Ancin ◽  
H.C. Craighead ◽  
M. Isaacson ◽  
L. Kam ◽  
...  

Neural protheses have potential to restore nervous system functions lost by trauma or disease. Nanofabrication extends this approach to implants for stimulating and recording from single or small groups of neurons in the spinal cord and brain; however, tissue compatibility is a major limitation to their practical application. We are using a cell culture method for quantitatively measuring cell attachment to surfaces designed for nanofabricated neural prostheses.Silicon wafer test surfaces composed of 50-μm bars separated by aliphatic regions were fabricated using methods similar to a procedure described by Kleinfeld et al. Test surfaces contained either a single or double positive charge/residue. Cyanine dyes (diIC18(3)) stained the background and cell membranes (Fig 1); however, identification of individual cells at higher densities was difficult (Fig 2). Nuclear staining with acriflavine allowed discrimination of individual cells and permitted automated counting of nuclei using 3-D data sets from the confocal microscope (Fig 3). For cell attachment assays, LRM5 5 astroglial cells and astrocytes in primary cell culture were plated at increasing cell densities on test substrates, incubated for 24 hr, fixed, stained, mounted on coverslips, and imaged with a 10x objective.


Author(s):  
A.S. Lossinsky ◽  
M.J. Song

Previous studies have suggested the usefulness of high-voltage electron microscopy (HVEM) for investigating blood-bram barrier (BBB) injury and the mechanism of inflammatory-cell (IC) attachment. These studies indicated that, in evaluating standard conventional thin sections, one might miss cellular attachment sites of ICs in their process of attaching to the luminal endothelial cell (EC) surface of cerebral blood vessels. Our current studies in animals subjected to autoimmune disease suggest that HVEM may be useful in localizing precise receptor sites involved in early IC attachment.Experimental autoimmune encephalomyelitis (EAE) was induced in mice and rats according to standard procedures. Tissue samples from cerebellum, thalamus or spinal cords were embedded in plastic following vascular perfusion with buffered aldehyde. Thick (0.5-0.7 μm) sections were cut on glass knives and collected on Formvar-coated slot grids stained with uranylacetate and lead citrate and examined with the AEI EM7 1.2 MV HVEM in Albany, NY at 1000 kV.


2019 ◽  
Vol 476 (24) ◽  
pp. 3835-3847 ◽  
Author(s):  
Aliyath Susmitha ◽  
Kesavan Madhavan Nampoothiri ◽  
Harsha Bajaj

Most Gram-positive bacteria contain a membrane-bound transpeptidase known as sortase which covalently incorporates the surface proteins on to the cell wall. The sortase-displayed protein structures are involved in cell attachment, nutrient uptake and aerial hyphae formation. Among the six classes of sortase (A–F), sortase A of S. aureus is the well-characterized housekeeping enzyme considered as an ideal drug target and a valuable biochemical reagent for protein engineering. Similar to SrtA, class E sortase in GC rich bacteria plays a housekeeping role which is not studied extensively. However, C. glutamicum ATCC 13032, an industrially important organism known for amino acid production, carries a single putative sortase (NCgl2838) gene but neither in vitro peptide cleavage activity nor biochemical characterizations have been investigated. Here, we identified that the gene is having a sortase activity and analyzed its structural similarity with Cd-SrtF. The purified enzyme showed a greater affinity toward LAXTG substrate with a calculated KM of 12 ± 1 µM, one of the highest affinities reported for this class of enzyme. Moreover, site-directed mutation studies were carried to ascertain the structure functional relationship of Cg-SrtE and all these are new findings which will enable us to perceive exciting protein engineering applications with this class of enzyme from a non-pathogenic microbe.


1995 ◽  
Vol 73 (02) ◽  
pp. 309-317 ◽  
Author(s):  
Dorothy A Beacham ◽  
Miguel A Cruz ◽  
Robert I Handin

SummaryIntroduction of single amino acid substitutions into the C-terminal Arg-Gly-Asp-Ser (RGDS) site of von Willebrand Factor, referred to as RGD mutant vWF, selectively abrogated vWF binding to platelet glycoprotein IIb/IIIa (GpIIb/IIIa, αIIbβ3 and abolished human umbilical vein endothelial cell (HUVEC) spreading, but not attachment, to RGD mutant vWF (Beacham, D. A., Wise, R. J., Turci, S. M. and Handin, R. I. 1992. J. Biol. Chem. 167, 3409-3415). These results suggested that in addition to the vitronectin receptor (VNR, αvβ3), a second endothelial membrane glycoprotein can mediate HUVEC adhesion to vWF. HUVEC attachment to wild-type (WT) and RGD-mutant vWF was reduced by two proteins known to block the vWF-platelet glycoprotein Ib/IX (GpIb/IX) interaction, the monoclonal antibody AS-7 and the recombinant polypeptide, vWF-A1. The addition of cytochalasin B or DNase I to disrupt potential GPIbα-cytoskeletal interactions enhanced the immunoprecipitation of endothelial GPIbα, caused HUVEC to round up, and increased HUVEC adhesion to RGD mutant vWF. These results indicate that while the VNR is the primary adhesion receptor for vWF, endothelial GPIbα can mediate HUVEC attachment to vWF. GpIb-dependent attachment could contribute to HUVEC adhesion under conditions when cell surface expression of the VNR is downregulated, and VNR-dependent adhesion is reduced.


1997 ◽  
Vol 78 (05) ◽  
pp. 1392-1398 ◽  
Author(s):  
A Schneider ◽  
M Chandra ◽  
G Lazarovici ◽  
I Vlodavsky ◽  
G Merin ◽  
...  

SummaryPurpose: Successful development of a vascular prosthesis lined with endothelial cells (EC) may depend on the ability of the attached cells to resist shear forces after implantation. The present study was designed to investigate EC detachment from extracellular matrix (ECM) precoated vascular prostheses, caused by shear stress in vitro and to test the performance of these grafts in vivo. Methods: Bovine aortic endothelial cells were seeded inside untreated polytetrafluoro-ethylene (PTFE) vascular graft (10 X 0.6 cm), PTFE graft precoated with fibronectin (FN), or PTFE precoated with FN and a naturally produced ECM (106 cells/graft). Sixteen hours after seeding the medium was replaced and unattached cells counted. The strength of endothelial cell attachment was evaluated by subjecting the grafts to a physiologic shear stress of 15 dynes/cm2 for 1 h. The detached cells were collected and quantitated. PTFE or EC preseeded ECM coated grafts were implanted in the common carotid arteries of dogs. Results: While little or no differences were found in the extent of endothelial cell attachment to the various grafts (79%, 87% and 94% of the cells attached to PTFE, FN precoated PTFE, or FN+ECM precoated PTFE, respectively), the number of cells retained after a shear stress was significanly increased on ECM coated PTFE (20%, 54% and 85% on PTFE, FN coated PTFE, and FN+ECM coated PTFE, respectively, p <0.01). Implantation experiments in dogs revealed a significant increase in EC coverage and a reduced incidence of thrombus formation on ECM coated grafts that were seeded with autologous saphenous vein endothelial cells prior to implantation. Conclusion: ECM coating significantly increased the strength of endothelial cell attachment to vascular prostheses subjected to shear stress. The presence of adhesive macromolecules and potent endothelial cell growth promoting factors may render the ECM a promising substrate for vascular prostheses.


2017 ◽  
Vol 2 (3) ◽  
pp. 150-163
Author(s):  
Ekajayanti Kining ◽  
Syamsul Falah ◽  
Novik Nurhidayat

Pseudomonas aeruginosa is one of opportunistic pathogen forming bacterial biofilm. The biofilm sustains the bacterial survival and infections. This study aimed to assess the activity of water extract of papaya leaves on inhibition of cells attachment, growth and degradation of the biofilm using crystal violet (CV) biofilm assay. Research results showed that water extract of papaya leaves contains alkaloids, tanins, flavonoids, and steroids/terpenoids and showed antibacterial activity and antibiofilm against P. aeruginosa. Addition of extract can inhibit the cell attachment and was able to degrade the biofilm of 40.92% and 48.058% respectively at optimum conditions: extract concentration of 25% (v/v), temperature 37.5 °C and contact time 45 minutes. With a concentration of 25% (v/v), temperature of 50 °C and the contact time of 3 days, extract of papaya leaves can inhibit the growth of biofilms of 39.837% v/v.


2019 ◽  
Vol 26 (34) ◽  
pp. 6321-6338 ◽  
Author(s):  
Shuaimeng Guan ◽  
Kun Zhang ◽  
Jingan Li

Stem cell transplantation is an advanced medical technology, which brings hope for the treatment of some difficult diseases in the clinic. Attributed to its self-renewal and differential ability, stem cell research has been pushed to the forefront of regenerative medicine and has become a hot topic in tissue engineering. The surrounding extracellular matrix has physical functions and important biological significance in regulating the life activities of cells, which may play crucial roles for in situ inducing specific differentiation of stem cells. In this review, we discuss the stem cells and their engineering application, and highlight the control of the fate of stem cells, we offer our perspectives on the various challenges and opportunities facing the use of the components of extracellular matrix for stem cell attachment, growth, proliferation, migration and differentiation.


Sign in / Sign up

Export Citation Format

Share Document