Biological synthesis of silver nanoparticles using animal blood, their preventive efficiency of bacterial species, and ecotoxicity in common carp fish

Author(s):  
Mian Adnan Kakakhel ◽  
Fasi Wu ◽  
Huyuan Feng ◽  
Zubair Hassan ◽  
Ihsan Ali ◽  
...  
2020 ◽  
Author(s):  
Mian Adnan Kakakhel ◽  
Fasi Wu ◽  
Wasim Sajjad ◽  
Qi Zhang ◽  
Ikram Khan ◽  
...  

Abstract BackgroundCurrently, nanotechnology and nanoparticles have been quickly emerged and have gained the attention of scientists due to its massive applications in environmental sectors. However, these environmental applications of silver nanoparticles potentially cause serious effects on terrestrial and aquatic organisms. In the current study, freshwater fish C. carpio were exposed to blood mediated AgNPs for toxicity, mortality, bioaccumulation, and histological alterations. Silver nanoparticles were fabricated using animal blood serum and their toxic effect was studied against common carp fish at different concentrations level (0.03, 0.06, and 0.09 mg/L).ResultsThe findings have revealed a little effect of blood induced silver nanoparticles (B-AgNPs) on fish behavior at the highest concentration (0.09 mg/L). However, bioaccumulation of B-AgNPs was reported in different organs of fish. Maximum bioaccumulation of B-AgNPs was reported in the liver, followed by intestine, gills, and muscles. Furthermore, the findings have showed that the B-AgNPs bioaccumulation led to histopathological alterations including damage structure of gills tissue and caused necrosis. It is summarized that histopathological alteration in gills and intestine mostly occurred at the highest concentration of B-AgNPs (0.09 mg/L). ConclusionThis study provides evidence of the AgNPs influence on aquatic life; however, further systematic studies are crucial to access the effects of AgNPs on aquatic life.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Mian Adnan Kakakhel ◽  
Fasi Wu ◽  
Wasim Sajjad ◽  
Qi Zhang ◽  
Ikram Khan ◽  
...  

Abstract Background Currently, nanotechnology and nanoparticles have quickly emerged and have gained the attention of scientists due to their massive applications in environmental sectors. However, these environmental applications of silver nanoparticles potentially cause serious effects on terrestrial and aquatic organisms. In the current study, freshwater fish C. carpio were exposed to blood-mediated silver nanoparticles for toxicity, mortality, bioaccumulation, and histological alterations. Silver nanoparticles were fabricated using animal blood serum and their toxic effect was studied against common carp fish at different concentrations levels (0.03, 0.06, and 0.09 mg/L). Results The findings have revealed a little influence of blood-induced silver nanoparticles on fish behavior at the highest concentration (0.09 mg/L). However, bioaccumulation of blood-mediated silver nanoparticles was reported in different organs of fish. Maximum bioaccumulation of silver nanoparticles was reported in the liver, followed by the intestine, gills, and muscles. Furthermore, the findings have shown that the bioaccumulation of silver nanoparticles led to histopathological alterations; including damaged structure of gill tissue and have caused necrosis. It is summarized that histopathological alteration in gill and intestine mostly occurred by the highest concentration of blood-induced silver nanoparticles (0.09 mg/L). Conclusion This study provides evidence of the silver nanoparticles influence on aquatic life; however, further systematic studies are crucial to access the effects of AgNPs on aquatic life.


Author(s):  
K.K. Gupta ◽  
Neha Kumari ◽  
Neha Sinha ◽  
Akruti Gupta

Biogenic synthesis of silver nanoparticles synthesized from Hymenocallis species (Spider Lilly) leaf extract was subjected for investigation of its antimicrobial property against four bacterial species (E. coli, Salmonella sp., Streptococcus sp. & Staphylococcus sp.). The results revealed that synthesized nanoparticles solution very much justify the color change property from initial light yellow to final reddish brown during the synthesis producing a characteristics absorption peak in the range of 434-466 nm. As antimicrobial agents, their efficacy was evaluated by analysis of variance in between the species and among the different concentration of AgNPs solution, which clearly showed that there was significant variation in the antibiotic property between the four different concentrations of AgNPs solution and also among four different species of bacteria taken under studies. However, silver nanoparticles solution of 1: 9 and 1:4 were proved comparatively more efficient as antimicrobial agents against four species of bacteria.


2021 ◽  
Vol 10 (1) ◽  
pp. 412-420
Author(s):  
Mona S. Alwhibi ◽  
Dina A. Soliman ◽  
Manal A. Awad ◽  
Asma B. Alangery ◽  
Horiah Al Dehaish ◽  
...  

Abstract In recent times, research on the synthesis of noble metal nanoparticles (NPs) has developed rapidly and attracted considerable attention. The use of plant extracts is the preferred mode for the biological synthesis of NPs due to the presence of biologically active constituents. Aloe vera is a plant endowed with therapeutic benefits especially in skincare due to its unique curative properties. The present study focused on an environmental friendly and rapid method of phytosynthesis of silver nanoparticles (Ag-NPs) using A. vera gel extract as a reductant. The synthesized Ag-NPs were characterized by transmission electron microscopy (TEM), UV-Vis spectroscopy, Fourier transform infrared (FTIR), and dynamic light scattering (DLS). TEM micrographs showed spherical-shaped synthesized Ag-NPs with a diameter of 50–100 nm. The UV-Vis spectrum displayed a broad absorption peak of surface plasmon resonance (SPR) at 450 nm. The mean size and size distribution of the formed Ag-NPs were investigated using the DLS technique. Antibacterial studies revealed zones of inhibition by Ag-NPs of A. vera (9 and 7 mm) against Pseudomonas aeruginosa and Escherichia coli, respectively. Furthermore, the antifungal activity was screened, based on the diameter of the growth inhibition zone using the synthesized Ag-NPs for different fungal strains. Anticancer activity of the synthesized Ag-NPs against the mouse melanoma F10B16 cell line revealed 100% inhibition with Ag-NPs at a concentration of 100 µg mL−1. The phytosynthesized Ag-NPs demonstrated a marked antimicrobial activity and also exhibited a potent cytotoxic effect against mouse melanoma F10B16 cells. The key findings of this study indicate that synthesized Ag-NPs exhibit profound therapeutic activity and could be potentially ideal alternatives in medicinal applications.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 852
Author(s):  
Tárcio S. Santos ◽  
Tarcisio M. Silva ◽  
Juliana C. Cardoso ◽  
Ricardo L. C. de Albuquerque-Júnior ◽  
Aleksandra Zielinska ◽  
...  

Silver nanoparticles are widely used in the biomedical and agri-food fields due to their versatility. The use of biological methods for the synthesis of silver nanoparticles has increased considerably due to their feasibility and high biocompatibility. In general, microorganisms have been widely explored for the production of silver nanoparticles for several applications. The objective of this work was to evaluate the use of entomopathogenic fungi for the biological synthesis of silver nanoparticles, in comparison to the use of other filamentous fungi, and the possibility of using these nanoparticles as antimicrobial agents and for the control of insect pests. In addition, the in vitro methods commonly used to assess the toxicity of these materials are discussed. Several species of filamentous fungi are known to have the ability to form silver nanoparticles, but few studies have been conducted on the potential of entomopathogenic fungi to produce these materials. The investigation of the toxicity of silver nanoparticles is usually carried out in vitro through cytotoxicity/genotoxicity analyses, using well-established methodologies, such as MTT and comet assays, respectively. The use of silver nanoparticles obtained through entomopathogenic fungi against insects is mainly focused on mosquitoes that transmit diseases to humans, with satisfactory results regarding mortality estimates. Entomopathogenic fungi can be employed in the synthesis of silver nanoparticles for potential use in insect control, but there is a need to expand studies on toxicity so to enable their use also in insect control in agriculture.


2020 ◽  
Vol 11 (3) ◽  
pp. 66
Author(s):  
Umar M. Badeggi ◽  
Jelili A. Badmus ◽  
Subelia S. Botha ◽  
Enas Ismail ◽  
Jeanine L. Marnewick ◽  
...  

In this study, procyanidin dimers and Leucosidea sericea total extract (LSTE) were employed in the synthesis of silver nanoparticles (AgNPs) and characterized by ultraviolet-visible (UV-Visible) spectroscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. AgNPs of about 2–7 nm were obtained. DLS and stability evaluations confirmed that the AgNPs/procyanidins conjugates were stable. The formed nanoparticles exhibited good inhibitory activities against the two enzymes studied. The IC50 values against the amylase enzyme were 14.92 ± 1.0, 13.24 ± 0.2, and 19.13 ± 0.8 µg/mL for AgNPs coordinated with LSTE, F1, and F2, respectively. The corresponding values for the glucosidase enzyme were 21.48 ± 0.9, 18.76 ± 1.0, and 8.75 ± 0.7 µg/mL. The antioxidant activities were comparable to those of the intact fractions. The AgNPs also demonstrated bacterial inhibitory activities against six bacterial species. While the minimum inhibitory concentrations (MIC) of F1-AgNPs against Pseudomonas aeruginosa and Staphylococcus aureus were 31.25 and 15.63 µg/mL respectively, those of LSTE-AgNPs and F2-AgNPs against these organisms were both 62.50 µg/mL. The F1-AgNPs demonstrated a better bactericidal effect and may be useful in food packaging. This research also showed the involvement of the procyanidins as reducing and capping agents in the formation of stable AgNPs with potential biological applications.


2018 ◽  
Vol 12 (6) ◽  
pp. 828-835 ◽  
Author(s):  
Eun‐Young Jang ◽  
Yong‐Jun Son ◽  
Soo‐Yeun Park ◽  
Ji‐Yeon Yoo ◽  
Dae‐Youn Hwang ◽  
...  

2021 ◽  
Vol 09 ◽  
Author(s):  
Sarvat Zafar ◽  
Aiman Zafar ◽  
Fakhra Jabeen ◽  
Miad Ali Siddiq

: Nanotechnology studies the various phenomena of physio-chemical procedures and biological properties for the generation of nanosized particles, and their rising challenges in the various sectors, like medicine, engineering, agriculture, electronic, and environmental studies. The nanosized particles exhibit good anti-microbial, anti-inflammatory, cytotoxic, drug delivery, anti-parasitic, anti-coagulant and catalytic properties because of their unique dimensions with large surface area, chemical stability and higher binding density for the accumulation of various bio-constituents on their surfaces. Biological approaches for the synthesis of silver nanoparticles (AgNPs) have been reviewed because it is an easy and single-step protocol and a viable substitute for the synthetic chemical-based procedures. Physical and chemical approaches for the production of AgNPs are also mentioned herein. Biological synthesis has drawn attention because it is cost-effective, faster, non-pathogenic, environment-friendly, easy to scale-up for large-scale synthesis, and having no demand for usage of high pressure, energy, temperature, or noxious chemical ingredients, and safe for human therapeutic use. Therefore, the collaboration of nanomaterials with bio-green approaches could extend the utilization of biological and cytological properties compatible with AgNPs. In this perspective, there is an immediate need to develop ecofriendly and biocompatible techniques, which strengthen efficacy against microbes and minimize toxicity for human cells. The present study introduces the biological synthesis of silver nanoparticles, and their potential biomedical applications have also been reviewed.


Sign in / Sign up

Export Citation Format

Share Document