Soil Structural Stability and Water Retention Characteristics Under Different Land uses of Degraded Lower Himalayas of North‐West India

2013 ◽  
Vol 26 (3) ◽  
pp. 263-271 ◽  
Author(s):  
D. Saha ◽  
S. S. Kukal
2021 ◽  
Vol 13 (3) ◽  
pp. 1407
Author(s):  
Amrakh I. Mamedov ◽  
Atsushi Tsunekawa ◽  
Nigussie Haregeweyn ◽  
Mitsuru Tsubo ◽  
Haruyuki Fujimaki ◽  
...  

Soil structural stability is a vital aspect of soil quality and functions, and of maintaining sustainable land management. The objective of this study was to compare the contribution of four long-term land-use systems (crop, bush, grass, and forest) coupled with anionic polyacrylamide (PAM = 0, 25, and 200 mg L−1) application on the structural stability of soils in three watersheds of Ethiopia varying in elevation. Effect of treatments on soil structural stability indices were assessed using the high energy moisture characteristic (HEMC, 0–50 hPa) method, which provides (i) water retention model parameters α and n, and (ii) soil structure index (SI). Soil (watershed), land use and PAM treatments had significant effects on the shape of the water retention curves (α, n) and SI, with diverse changes in the macropore sizes (60–250; >250 μm). Soil organic carbon (SOC) content and SI were strongly related to soil pH, CaCO3 soil type-clay mineralogy, exchangeable Ca2+, and Na+ (negatively). The order of soil SI (0.013–0.064 hPa−1) and SOC (1.4–8.1%) by land use was similar (forest > grass > bush > cropland). PAM effect on increasing soil SI (1.2–2.0 times), was inversely related to SOC content, being also pronounced in soils from watersheds of low (Vertisol) and medium (Luvisol) elevation, and the cropland soil from high (Acrisol) elevation. Treating cropland soils with a high PAM rate yielded greater SI (0.028–0.042 hPa−1) than untreated bush- and grassland soils (0.021–0.033 hPa−1). For sustainable management and faster improvement in soil physical quality, soil properties, and land-use history should be considered together with PAM application.


2020 ◽  
Author(s):  
Marc Redmile-Gordon

<p>Structural stability in agricultural soils is said to be maintained through production of ‘biological binding agents’, including temporary binding agents (fungi, roots), transient binding agents (EPS), and persistent binding agents (of less certain origin). We sampled soils from a long-term field trial, comprising previous grassland, arable and fallow land-uses in factorial combination with current land-uses of the same type: previous 3 land-uses  x current 3 land-uses = 9 treatments (Redmile-Gordon et al., 2020). Total soil organic carbon (SOC), EPS (including protein, and polysaccharide fractions; Redmile-Gordon et al., 2014), and mean weight diameter (MWD) of water stable aggregates (Le Bissonnais, 1996) were quantified.</p><p>Both EPS and MWD were correlated, and were both strongly influenced by current land-use (implemented 2.5 years before sampling), but not by previous land-use (implemented > 50 years ago, terminated 2.5 years before sampling). While exopolysaccharides were significantly correlated to the soil’s structural stability (p = 0.027), proteinaceous EPS were more closely related to the associated gains in soil aggregate stability (p = 0.002).</p><p>In contrast to EPS and soil stability, total soil organic carbon (SOC) was strongly influenced by previous land-use. Importantly, this indicates that any capacity for relatively stable organic matter to contribute to the soil’s structural stability is overwhelmed by temporary/transient effects owed to current land-use. This is cause for optimism, as it seems the physical quality of soils might be improved by short-term application of managements that favour EPS production. This approach would represent a qualitative step beyond that of building total SOC, which can be difficult for land-managers to achieve. This study is the first to simultaneously assess the effects of land-use on proteinaceous and polysaccharide content of EPS, and link this to the structural stability of soils. Further understanding surrounding the ecology of EPS production, and disentangling the contributions of temporary (largely physical) vs. transient (biochemical) binding agents is hoped to contribute to the development of more efficient land-management strategies.</p><p> </p><p><strong>References:</strong></p><p>Le Bissonnais, Y., <strong>1996</strong>. Aggregate stability and assessment of soil crustability and erodibility.<br>1. Theory and methodology. Eur. J. Soil Sci. 47, 425–437.</p><p>Redmile-Gordon, M., Brookes, P.C., Evershed, R.P., Goulding, K.W.T., Hirsch, P.R., <strong>2014</strong>. Measuring the soil-microbial interface: extraction of extracellular polymeric substances (EPS) from soil biofilms. Soil Biol. Biochem. 72, 163–171.</p><p>Redmile-Gordon, M., Gregory, A.S., White, R.P., Watts, C.W. <strong>2020</strong>. Soil organic carbon, extracellular polymeric substances (EPS), and soil structural stability as affected by previous and current land-use. Geoderma, 363. https://doi.org/10.1016/j.geoderma.2019.114143</p>


2018 ◽  
Vol 32 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Elham Farahani ◽  
Hojat Emami ◽  
Thomas Keller

AbstractIn this study, we investigated the impact of adding solutions with different potassium and sodium concentrations on dispersible clay, water retention characteristics, air permeability, and soil shrinkage behaviour using two agricultural soils from Switzerland with different clay content but similar organic carbon to clay ratio. Three different solutions (including only Na, only K, and the combination of both) were added to soil samples at three different cation ratio of soil structural stability levels, and the soil samples were incubated for one month. Our findings showed that the amount of readily dispersible clay increased with increasing Na concentrations and with increasing cation ratio of soil structural stability. The treatment with the maximum Na concentration resulted in the highest water retention and in the lowest shrinkage capacity. This was was associated with high amounts of readily dispersible clay. Air permeability generally increased during incubation due to moderate wetting and drying cycles, but the increase was negatively correlated with readily dispersible clay. Readily dispersible clay decreased with increasing K, while readily dispersible clay increased with increasing K in Iranian soil (Part I of our study). This can be attributed to the different clay mineralogy of the studied soils (muscovite in Part I and illite in Part II).


Author(s):  
Joanes E Koagouw ◽  
Gybert E Mamuaya ◽  
Adrie A Tarumingkeng ◽  
P A Angmalisang

Coastal area of Bitung Municipality is one of the economical activities centers in North Sulawesi Province such as for land-uses and the exploitation of natural resources. Those activities are exaggerating day bay day and tended to be uncontrollable. The excess of those conditions, it has been recorded the change of waves in Bitung waters that has impacts to coastal areas and can affect the utilization of coastal and marine resources. This research was aimed to observe waves altitude variations in Bitung waters with Svedrup Munk and Bretchsneider (SMB) method that had been used to predict waves altitudes. The results showed that the wind speed during West Season was 0.33 m and were dominant to the East, while during East season was 0.91m from South-East to North-West, and then on transition period (March to May) was 1.08m from South-East to East. The results of those wind speed to the waves altitudes in Bitung waters is discussed in this paper© Pesisir pantai Kota Bitung merupakan salah satu pusat aktivitas ekonomi (misalnya pemanfaatan lahan dan eksploitasi sumberdaya) di Provinsi Sulawesi Utara. Aktivitas tersebut semakin hari semakin meningkat dan memiliki kecenderungan tidak terkontrol. Akibat dari keadaan tersebut, telah terjadi perubahan fenomena gelombang di perairan Bitung yang berdampak pada keberadaan daerah pesisir pantai di mana hal ini dapat mengganggu aktivitas pemanfaatan sumberdaya pesisir dan laut tersebut. Penelitian ini bertujuan untuk mengetahui variasi tinggi gelombang di perairan Bitung dengan menggunakan metode Svedrup Munk and Bretchsneider (SMB) yang biasa digunakan untuk peramalan tinggi gelombang signifikan. Hasil penelitian menunjukkan bahwa kecepatan angin pada Musim Barat sebesar 0,33 meter dan dominan ke arah Timur, sementara pada Musim Timur sebesar 0,91 meter dari arah Tenggara ke Barat Laut, serta pada Musim Peralihan (antara bulan Maret-Mei) adalah sebesar 1,08 meter dari arah Tenggara dan Timur. Pengaruh kecepatan angin tersebut terhadap gelombang laut di perairan Bitung dibahas dalam tulisan ini©


Author(s):  
Vitalis Kibiwott Too ◽  
Christian Thine Omuto ◽  
Elijah Kipngetich Biamah ◽  
John Paul Obiero

2016 ◽  
Vol 9 ◽  
pp. 10007 ◽  
Author(s):  
Vasileios Mantikos ◽  
Steven Ackerley ◽  
Andrew Kirkham ◽  
Aikaterini Tsiampousi ◽  
David M.G. Taborda ◽  
...  

2014 ◽  
Vol 941-944 ◽  
pp. 952-955 ◽  
Author(s):  
Dao Yuan Wang ◽  
Deng Hua Yan ◽  
Xin Shan Song ◽  
Hao Wang

Adding biochar to agricultural soil has been suggested as an approach to enhance soil carbon sequestration. Biochar has also been used as a soil amendment to reduce nutrient leaching, reduce soil acidity and improve water holding capacity. Walnut shells and woody material are waste products of orchards that are cheap, carbon-rich and good feedstock for production of biochar. The effectiveness of biochar as an amendment varies considerably as a function of its feedstock, temperature during pyrolysis, the biochar dose to soil, and mechanical composition. Biochar was produced from pyrolysis of walnut shell at 900 °C and soft wood at 600 to 700 °C. We measured the effect of these different parameters in two types of agricultural soil in Jilin and Beijing, China, a silt clay loam and a sandy loam, on the soils’ particle size distribution and water retention characteristics. Biochars with two different doses were applied to each soil type. Soil field capacity and permanent wilting point were measured using a pressure plate extractor for each combination of biochar and soil type. The results show that the effect of biochar amendment on soil water retention characteristics depend primarily on soil particle size distribution and surface characteristics of biochar. High surface area biochar can help raise the water holding capacity of sandy soil.


Sign in / Sign up

Export Citation Format

Share Document