scholarly journals Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases

2021 ◽  
Author(s):  
Li Wang ◽  
Jiajia Li ◽  
Li‐jun Di
2021 ◽  
Vol 14 (3) ◽  
pp. 281
Author(s):  
Francesco Oddone ◽  
Luca Rossetti ◽  
Mariacristina Parravano ◽  
Diego Sbardella ◽  
Massimo Coletta ◽  
...  

Cytidine 5’-diphosphocholine has been widely studied in systemic neurodegenerative diseases, like Alzheimer’s disease, Parkinson’s disease, and brain ischemia. The rationale for the use of citicoline in ophthalmological neurodegenerative diseases, including glaucoma, anterior ischemic optic neuropathy, and diabetic retinopathy, is founded on its multifactorial mechanism of action and the involvement in several metabolic pathways, including phospholipid homeostasis, mitochondrial dynamics, as well as cholinergic and dopaminergic transmission, all being involved in the complexity of the visual transmission. This narrative review is aimed at reporting both pre-clinical data regarding the involvement of citicoline in such metabolic pathways (including new insights about its role in the intracellular proteostasis through an interaction with the proteasome) and its effects on clinical psychophysical, electrophysiological, and morphological outcomes following its use in ophthalmological neurodegenerative diseases (including the results of the most recent prospective randomized clinical trials).


2021 ◽  
Vol 22 (6) ◽  
pp. 3245
Author(s):  
Luca X. Zampieri ◽  
Catarina Silva-Almeida ◽  
Justin D. Rondeau ◽  
Pierre Sonveaux

Depending on their tissue of origin, genetic and epigenetic marks and microenvironmental influences, cancer cells cover a broad range of metabolic activities that fluctuate over time and space. At the core of most metabolic pathways, mitochondria are essential organelles that participate in energy and biomass production, act as metabolic sensors, control cancer cell death, and initiate signaling pathways related to cancer cell migration, invasion, metastasis and resistance to treatments. While some mitochondrial modifications provide aggressive advantages to cancer cells, others are detrimental. This comprehensive review summarizes the current knowledge about mitochondrial transfers that can occur between cancer and nonmalignant cells. Among different mechanisms comprising gap junctions and cell-cell fusion, tunneling nanotubes are increasingly recognized as a main intercellular platform for unidirectional and bidirectional mitochondrial exchanges. Understanding their structure and functionality is an important task expected to generate new anticancer approaches aimed at interfering with gains of functions (e.g., cancer cell proliferation, migration, invasion, metastasis and chemoresistance) or damaged mitochondria elimination associated with mitochondrial transfer.


Life Sciences ◽  
2021 ◽  
pp. 120229
Author(s):  
Ana Paula Azevêdo Macêdo ◽  
Vitor Rosetto Muñoz ◽  
Dennys Esper Cintra ◽  
José Rodrigo Pauli

2015 ◽  
Vol 224 (3) ◽  
pp. 303-313 ◽  
Author(s):  
Jonathan M Mudry ◽  
Julie Massart ◽  
Ferenc L M Szekeres ◽  
Anna Krook

TWIST proteins are important for development of embryonic skeletal muscle and play a role in the metabolism of tumor and white adipose tissue. The impact of TWIST on metabolism in skeletal muscle is incompletely studied. Our aim was to assess the impact of TWIST1 and TWIST2 overexpression on glucose and lipid metabolism. In intact mouse muscle, overexpression of Twist reduced total glycogen content without altering glucose uptake. Expression of TWIST1 or TWIST2 reducedPdk4mRNA, while increasing mRNA levels ofIl6,Tnfα, andIl1β. Phosphorylation of AKT was increased and protein abundance of acetyl CoA carboxylase (ACC) was decreased in skeletal muscle overexpressing TWIST1 or TWIST2. Glycogen synthesis and fatty acid oxidation remained stable in C2C12 cells overexpressing TWIST1 or TWIST2. Finally, skeletal muscle mRNA levels remain unaltered inob/obmice, type 2 diabetic patients, or in healthy subjects before and after 3 months of exercise training. Collectively, our results indicate that TWIST1 and TWIST2 are expressed in skeletal muscle. Overexpression of these proteins impacts proteins in metabolic pathways and mRNA level of cytokines. However, skeletal muscle levels of TWIST transcripts are unaltered in metabolic diseases.


Author(s):  
Jiyoung Lee ◽  
Joselyn Padilla

BTB domain and CNC homology 1 (BACH1) is a highly expressed transcription factor in tumors including breast and lung, relative to their non-tumor tissues. BACH1 is known to regulate multiple physiological processes including heme homeostasis, oxidative stress response, senescence, cell cycle, and mitosis. In a tumor, BACH1 promotes invasion and metastasis of cancer cells, and the expression of BACH1 presents a poor outcome for cancer patients including breast cancer patients. Recent studies identified novel functional roles of BACH1 in the regulation of metabolic pathways in cancer cells. BACH1 inhibits mitochondrial metabolism through transcriptional suppression of mitochondrial membrane genes. In addition, BACH1 suppresses activity of pyruvate dehydrogenase (PDH), a key enzyme that converts pyruvate to acetyl-CoA for the citric acid (TCA) cycle through transcriptional activation of pyruvate dehydrogenase kinase (PDK). Moreover, BACH1 increases glucose uptake and lactate secretion in aerobic glycolysis through the expression of metabolic enzymes involved such as hexokinase 2 (HK2) and glyceraldehyde 3- phosphate dehydrogenase (GAPDH). Pharmacological or genetic inhibition of BACH1 could reprogramme metabolic pathways, subsequently rendering metabolic vulnerability of cancer cells. Furthermore, inhibition of BACH1 decreased antioxidant-induced glycolysis rates as well as reduced migration and invasion of cancer cells, suggesting BACH1 as a potentially useful cancer therapeutic target.


2014 ◽  
Vol 995 ◽  
pp. 1-27 ◽  
Author(s):  
Mahbuba Rahman ◽  
M. Rubayet Hasan

Pentose phosphate (PP) pathway, which is ubiquitously present in all living organisms, is one of the major metabolic pathways associated with glucose metabolism. The most important functions of this pathway includes the generation of reducing equivalents in the form of NADPH for reductive biosynthesis, and production of ribose sugars for the biosynthesis of nucleotides, amino acids, and other macromolecules required by all living cells. Under normal conditions of growth, PP pathway is important for cell cycle progression, myelin formation, and the maintenance of the structure and function of brain, liver, cortex and other organs. Under diseased conditions, such as in cases of many metabolic, neurological or malignant diseases, pathological mechanisms augment due to defects in the PP pathway genes. Adoption of alternative metabolic pathways by cells that are metabolically abnormal, or malignant cells that are resistant to chemotherapeutic drugs often plays important roles in disease progression and severity. Accordingly, the PP pathway has been suggested to play critical roles in protecting cancer or abnormal cells by providing reduced environment, to protect cells from oxidative damage and generating structural components for nucleic acids biosynthesis. Novel drugs that targets one or more components of the PP pathway could potentially serve to overcome challenges associated with currently available therapeutic options for many metabolic and non-metabolic diseases. However, careful designing of drugs is critical that takes into the accounts of cell’s broader genomic, proteomic and metabolic contexts under consideration, in order to avoid undesirable side-effects. In this review, we discuss the role of PP pathway under normal and abnormal physiological conditions and the potential of the PP pathway as a target for new drug development to treat metabolic and non-metabolic diseases.


2018 ◽  
Vol 19 (7) ◽  
pp. 2069 ◽  
Author(s):  
Chang Han

Farnesoid X receptor (FXR), a metabolic nuclear receptor, plays critical roles in the maintenance of systemic energy homeostasis and the integrity of many organs, including liver and intestine. It regulates bile acid, lipid, and glucose metabolism, and contributes to inter-organ communication, in particular the enterohepatic signaling pathway, through bile acids and fibroblast growth factor-15/19 (FGF-15/19). The metabolic effects of FXR are also involved in gut microbiota. In addition, FXR has various functions in the kidney, adipose tissue, pancreas, cardiovascular system, and tumorigenesis. Consequently, the deregulation of FXR may lead to abnormalities of specific organs and metabolic dysfunction, allowing the protein as an attractive therapeutic target for the management of liver and/or metabolic diseases. Indeed, many FXR agonists have been being developed and are under pre-clinical and clinical investigations. Although obeticholic acid (OCA) is one of the promising candidates, significant safety issues have remained. The effects of FXR modulation might be multifaceted according to tissue specificity, disease type, and/or energy status, suggesting the careful use of FXR agonists. This review summarizes the current knowledge of systemic FXR biology in various organs and the gut–liver axis, particularly regarding the recent advancement in these fields, and also provides pharmacological aspects of FXR modulation for rational therapeutic strategies and novel drug development.


Author(s):  
Daniel Rabier

Amino acids present in the different biological fluids belong to two groups: the protein group, with the 21 classical amino acids constituting the backbone of the protein, and the nonprotein group, appearing in different metabolic pathways as intermediate metabolites. It is important to know and to be able to recognize the latter, as they are the markers of many inherited metabolic diseases. Three kinds of pathways must be considered: the catabolic pathways, the synthesis pathways, and the transport pathways. A disorder on a catabolic pathway induces an increase of all metabolites upstream and so an increase of the starting amino acid in all fluids. Any disorder on the synthetic pathway of a particular amino acid will induce a decrease of this amino acid in all fluids. When a transporter is located on a plasma membrane, its deficiency will result in normal or low concentration in plasma concomitant to a high excretion in urine.


Sign in / Sign up

Export Citation Format

Share Document