The effects of solvent casting temperature and physical aging on polyhydroxybutyrate‐graphene nanoplatelet composites

2020 ◽  
Author(s):  
Preetam Anbukarasu ◽  
Dominic Sauvageau ◽  
Anastasia Elias



2021 ◽  
Vol 2080 (1) ◽  
pp. 012010
Author(s):  
Syarifah Nuraqmar Syed Mahamud ◽  
Ovinesh Ganesan ◽  
Mohd Hanif Mohd Pisal ◽  
Nurul Ekmi Rabat

Abstract Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) is one of the most promising biodegradable polymers used in many applications due to its biodegradability and non-toxicity. However, the usage of PHBV in electronic, biomedical, and biosensor applications has been limited due to its poor electrical properties. This study shows a simple method of producing and enhancing the electrical conductivity of PHBV-based biocomposites by adding graphene nanoplatelet (GNP) as a conductive filler. The biocomposite films were prepared using the solvent casting method, consist of five GNP loading (0-5 wt. %). The prepared PHBV/GNP biocomposites show enhanced electrical conductivity compared to neat PHBV. PHBV/GNP biocomposite with 5 wt. % filler loading exhibits the highest electrical conductivity at 3.83 × 10−3 S/cm. Higher crystalline regions in the PHBV/GNP biocomposites have facilitated the transfer of electrons between PHBV, resulting in the formation of conductive biocomposites, as evident from X-ray diffraction (XRD) characterization.





2016 ◽  
Vol 58 (7-8) ◽  
pp. 640-643 ◽  
Author(s):  
Ilyas Istif ◽  
Mehmet Tunc Tuncel


2018 ◽  
Vol 28 (2) ◽  
pp. 429-432
Author(s):  
Dilyana Zvezdova

Chitosan, a hydrophilic biopolymer industrially obtained by N-deacetylation of chitin, can be applied as an antimicrobial agent. It highlights the applications of chitosan as an antimicrobial agent against fungi, bacteria, and viruses and as an elicitor of plant defense mechanisms. A series of novel chitosan-sulfathiazole nanocomposite (CSFZ) films were prepared by using solvent casting method for wound healing application. Fourier transform infrared spectroscopy (FTIR) was employed to ascertain the interaction between negatively charged sulfathiazole and positively charged chitosan. Moreover, the antibacterial activity of the films was investigated against gram positive and gram negative microorganisms. It was found that all CSFZ films showed good inhibitory activity against all the tested bacteria as compared to control. The above analysis suggested that the CSFZ films could be used as potential candidates for wound healing application.



2016 ◽  
Vol 4 (2) ◽  
pp. 120-125 ◽  
Author(s):  
Deepa A. Rao ◽  
Brianna Cote ◽  
Michelle Stammet ◽  
Adel M. Al Fatease ◽  
Adam W.G. Alani


2019 ◽  
Vol 821 ◽  
pp. 89-95
Author(s):  
Wanasorn Somphol ◽  
Thipjak Na Lampang ◽  
Paweena Prapainainar ◽  
Pongdhorn Sae-Oui ◽  
Surapich Loykulnant ◽  
...  

Poly (lactic acid) or PLA was reinforced by nanocellulose and polyethylene glycol (PEG), which were introduced into PLA matrix from 0 to 3 wt.% to enhance compatibility and strength of the PLA. The nanocellulose was prepared by TEMPO-mediated oxidation from microcrystalline cellulose (MCC) powder and characterized by TEM, AFM, and XRD to reveal rod-like shaped nanocellulose with nanosized dimensions, high aspect ratio and high crystallinity. Films of nanocellulose/PEG/PLA nanocomposites were prepared by solvent casting method to evaluate the mechanical performance. It was found that the addition of PEG in nanocellulose-containing PLA films resulted in an increase in tensile modulus with only 1 wt% of PEG, where higher PEG concentrations negatively impacted the tensile strength. Furthermore, the tensile strength and modulus of nanocellulose/PEG/PLA nanocomposites were higher than the PLA/PEG composites due to the existence of nanocellulose chains. Visual traces of crazing were detailed to describe the deformation mechanism.



Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 954
Author(s):  
Xavier Monnier ◽  
Sara Marina ◽  
Xabier Lopez de Pariza ◽  
Haritz Sardón ◽  
Jaime Martin ◽  
...  

The present work aims to provide insights on recent findings indicating the presence of multiple equilibration mechanisms in physical aging of glasses. To this aim, we have investigated a glass forming polyether, poly(1-4 cyclohexane di-methanol) (PCDM), by following the evolution of the enthalpic state during physical aging by fast scanning calorimetry (FSC). The main results of our study indicate that physical aging persists at temperatures way below the glass transition temperature and, in a narrow temperature range, is characterized by a two steps evolution of the enthalpic state. Altogether, our results indicate that the simple old-standing view of physical aging as triggered by the α relaxation does not hold true when aging is carried out deep in the glassy state.



Sign in / Sign up

Export Citation Format

Share Document