Mechanism of formation of polyaniline flakes with high degree of crystallization using a soft template in the presence of cetyltrimethy-lammonium bromide

2012 ◽  
Vol 61 (5) ◽  
pp. 768-773 ◽  
Author(s):  
Xinxin Hu ◽  
Hua Bao ◽  
Ping Wang ◽  
Shilei Jin ◽  
Zheming Gu
2021 ◽  
Vol 2114 (1) ◽  
pp. 012033
Author(s):  
Abubaker.S. Mohammed

Abstract In this article, the quaternary compound Cu2MSnS4 was prepared in a simple and inexpensive approach, where M is the iron (Fe) and zinc (Zn) atoms by the spin coating method on a glass substrate at room temperature (RT), as a result of replacing Zn atoms by Fe. Quaternary Cu2ZnSnS4 (CZTS) and Cu2FeSrS4 (CFTS) structural and optical properties have been studied successfully. The material has been identified by X-ray diffraction, and it was discovered that CZTS has a polycrystalline Tetragonal (kesterite) structure, whereas CFTS has a Tetragonal (stannite) structure. A reduction in the full width half maximum (FWHM) of the preferred plane implies a high degree of crystallization. The structural properties of the film surface, such as grain size and roughness, were studied by Atomic force microscopy (AFM). The results explain an increase in nanoparticle size and surface roughness when Fe is substituted by Zn in the CZTS structure. The absorption coefficient values of all designed compounds in visible regions are greater than 104/cm, and the results show that the absorbance coefficient increases with Fe add. The CZTS films showed an energy gap of 1.88 eV, and this value became 1.69 eV with substituted Fe instead of Zn.


2010 ◽  
Vol 654-656 ◽  
pp. 1186-1189 ◽  
Author(s):  
Bing Cong Zhang ◽  
Hong Ying Yu ◽  
Dong Bai Sun

Three different kinds of morphologies including spherical, chainlike and wirelike cobalt nanopowders, have been synthesized by chemical reduction of coblat chloride solution with hydrazine hydrate in basic solution. The products were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). It was revealed that the morphologies of the nanopowders depend on the concentration of Co2+ and the way of adding reducing agent (hydrazine hydrate). These two features affected the nucleation sites and the number of nucleuses. When the concentration of Co2+ was low, nucleuses formed in the soft template, while the reducing of the reducing agent added drop wise, a little number of nucleuses was formed. Based on that, a mechanism of formation, as a basis of gram-scale syntheses, was proposed.


2011 ◽  
Vol 239-242 ◽  
pp. 322-327 ◽  
Author(s):  
Ying Nan Xie ◽  
Zheng Hai Shi ◽  
Jian Lian Liu

In presence of nano-In2O3 which were synthesised via a reverse microemulsion, Polyaniline/nano-In2O3 composites were prepared by in-situ polymerization of aniline in 5-sulphosalicylic acid(SSA) aqueous solution. They were characterized by means of TEM, XRD and FTIR.. TEM and XRD showed that the average diameter of In2O3 particles was 15nm with a narrow size distribution and with a high degree of crystallization. The FTIR suggested that the structure of PAn-SSA was not be changed by the mixture of In2O3. Sensitivity of the composites to 100~1000ppm NH3 were studied, the results reveal that polyaniline/nano-In2O3 composites have short response time and good reversibility, the gas sensitive of composites to NH3 under 300ppm increased linearly with the increasing concentration of NH3 and decreased with the increasing of In2O3 concentration. Long-term stability of polyaniline/nano-In2O3 composites were also investagated, it can be concluded that the organic-inorganic hybrid materials have better environmental stability.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hsien-Tang Chiu ◽  
Szu-Yuan Huang ◽  
Yan-Fu Chen ◽  
Ming-Tai Kuo ◽  
Tzong-Yiing Chiang ◽  
...  

In this study the relationships between mechanicals properties and morphology of the poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blends with or without heat treatment were investigated. The differential scanning calorimetry (DSC) analysis showed that blends have a two-phase structure indicating that they are immiscible. On the other hand, the PLA/PBAT (30/70) blend achieved the best tensile and impact strength because of its sea-island morphology, except for high PBAT content. The PLA/PBAT (70/30) and PLA/PBAT (50/50) blends showed irregular and directive-layer morphologies, in scanning electron microscopy (SEM) analysis, producing a break cross-section with various fiber shapes. Both blends showed lower tensile strength and impact strength than the PLA/PBAT (30/70). After heat treatment, the PLA/PBAT blends showed high modulus of tensile and HDT because of a high degree of crystallization. The high degree of crystallization in the blends, which originated in the heat treatment, reduced their impact strength and elongation. However, the effect of high degree of crystallization on the PLA/PBAT (30/70) blend was small because of its sea-island morphology.


2018 ◽  
Vol 55 (1B) ◽  
pp. 238
Author(s):  
Minh N. H.

Glass ceramics (GCs), which often contain a small amount of rare earth oxides to improve their performance, are ideal for dental restorative applications. The aim of this study was to investigate the various effects of Nd2O3 content (0–1 wt%) on crystallization and properties of GC derived from Li2O–K2O–Al2O3–SiO2–P2O5 system. The glass blocks were formed from the molten at 1450 °C. Based on the DTA results, the glass samples were experienced by two–stage heat–treatment (600 °C/ 90 min + 720 °C/ 30 min) to change to ingots. After that, the ingot samples were fired in a hot pressing furnace EP3000 at 930 °C for 30 min. The results of powder X–ray diffraction (XRD) indicated that the final GCs contained crystals such as lithium disilicate (Li2Si2O5 or LS2), lithium metasilicate (Li2SiO3 or LS) and the traces of lithium phosphate (Li3PO4). With increasing Nd2O3 content, the relative amount of LS phase increased slightly while LS2 phase decreased. However, the final GC containing 0.75 wt% Nd2O3 had the highest bending strength at 293 MPa, the lowest chemical solubility and relative high Vicker hardness. These samples had a high degree of crystallization and the highest relative content of desired LS2 phase.


2014 ◽  
Vol 492 ◽  
pp. 297-300
Author(s):  
Liu Fang Yang ◽  
Yu Lin Wang ◽  
Qin Hui Wang

Using zinc chloride solution and ammonia (25%) as raw material, with the presence of surfactant (CTAB), the microrod ZnO material was synthesized by the hydrothermal method. The phase composition and microstructure of the prepared ZnO material were characterized with XRD and SEM. The results show that the ZnO material possesses a high degree of crystallization, its diameter below 4 μm, and its length about 35 μm. The gas sensing property of gas sensor fabricated with the prepared ZnO material was evaluated via the static volumetric method. At the operating temperature of 200°C, the gas sensor has high sensitivity and selectivity to CH3COCH3.The gas sensing characterization was also discussed.


2019 ◽  
Vol 890 ◽  
pp. 205-225
Author(s):  
Fernando Brites ◽  
Cândida Malça ◽  
Florindo Gaspar ◽  
João F. Horta ◽  
Margarida C. Franco ◽  
...  

This work focuses on studying the possibility of 3D printing of composite materials composed by cork and a polymer matrix (CPC). Initially the cork was mixed with two types of polymers (HDPE and PP) in different proportions and later processed using extrusion and injection. The composites were tested to study the physical, chemical and mechanical properties. The material was then tested on a large-scale 3D printer to study its feasibility and the ability to produce new products through 3D printing. Attention was focused on the use of pure cork, varying the concentration of cork and coupling agent in thermoplastic matrix composites of PP and HDPE. It was demonstrated that the increase of 5wt.% of coupling agent in the two types of polymers significantly improved the mechanical properties and adhesion between the phases but the increase in cork concentration decreased mechanical properties and crystallinity. The CPCs with PP showed to have better mechanical properties, better aesthetic and internal structural quality, and easier processability than those with HDPE matrix. Nevertheless, the HDPE CPCs showed a high degree of crystallization. Concerning 3D printing, with the filament obtained was demonstrated the possibility of making new products based on natural cork fibers, showing promising results, although additional research is still needed to optimize the process.


Author(s):  
Dan Nicolae Ungureanu ◽  
Nicolae Angelescu ◽  
Adrian Catangiu ◽  
Daniela Avram ◽  
Florina Violeta Anghelina ◽  
...  

AbstractThis paper presents the most used processes for the synthesis of hydroxyapatite from aqueous solutions: chemical precipitation, the hydrothermal process and the sol-gel method. The experimental part includes the synthesis of hydroxyapatite by chemical precipitation. The obtained results confirm the obtaining of a ceramic with a high purity and a high degree of crystallization.


2020 ◽  
Vol 19 (5) ◽  
pp. 384-388
Author(s):  
P. M. Bohaslauchyk ◽  
V. A. Evdokimov

Erosion is divided into two stages in accordance with the accepted design scheme for erosion of a soil dam during overflow. The paper deals with the first stage, when the downstream thrust prism is washed out. The key factor in calculating erosion deformations is the choice of the solid flow rate formula. Studies show that the mechanism of formation and transportation of solid runoff during erosion of dam models from sandy oils is very similar to that previously described by many authors for the condition of river channel erosion. The peculiarity of the process is that the erosion occurs at high speeds. Therefore, solid runoff almost immediately goes into a suspended state. To select the required formula, experiments have been carried out on models of dams made of sandy soils having various granulometric composition. It has been established that at high velocities under the considered conditions, the value of the solid waste flow rate depends solely on hydraulic characteristics of the flow. The influence of physical and mechanical properties of the eroded soil on the value of the flow rate of solid runoff is insignificant, and they may not be taken into account. Calculations have been carried out using formulas known from river hydraulics, which show that none of them gives sufficient convergence with experimental data. Based on the analysis of a large number of experimental data, a formula for the discharge of solid runoff for erosion conditions of dam models during overflow has been obtained in the paper. This has taken into account the fact that the dam erosion by the overflow has a high degree of stochasticity and is difficult to describe theoretically. This is especially evident in conditions of spatial erosion, when, simultaneously with the classical erosion of the bottom, the sides of the eroded hole periodically collapse, which is difficult to take into account in the calculations.


Author(s):  
Adrian F. van Dellen

The morphologic pathologist may require information on the ultrastructure of a non-specific lesion seen under the light microscope before he can make a specific determination. Such lesions, when caused by infectious disease agents, may be sparsely distributed in any organ system. Tissue culture systems, too, may only have widely dispersed foci suitable for ultrastructural study. In these situations, when only a few, small foci in large tissue areas are useful for electron microscopy, it is advantageous to employ a methodology which rapidly selects a single tissue focus that is expected to yield beneficial ultrastructural data from amongst the surrounding tissue. This is in essence what "LIFTING" accomplishes. We have developed LIFTING to a high degree of accuracy and repeatability utilizing the Microlift (Fig 1), and have successfully applied it to tissue culture monolayers, histologic paraffin sections, and tissue blocks with large surface areas that had been initially fixed for either light or electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document