scholarly journals Heat Treatment Effects on the Mechanical Properties and Morphologies of Poly (Lactic Acid)/Poly (Butylene Adipate-co-terephthalate) Blends

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hsien-Tang Chiu ◽  
Szu-Yuan Huang ◽  
Yan-Fu Chen ◽  
Ming-Tai Kuo ◽  
Tzong-Yiing Chiang ◽  
...  

In this study the relationships between mechanicals properties and morphology of the poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blends with or without heat treatment were investigated. The differential scanning calorimetry (DSC) analysis showed that blends have a two-phase structure indicating that they are immiscible. On the other hand, the PLA/PBAT (30/70) blend achieved the best tensile and impact strength because of its sea-island morphology, except for high PBAT content. The PLA/PBAT (70/30) and PLA/PBAT (50/50) blends showed irregular and directive-layer morphologies, in scanning electron microscopy (SEM) analysis, producing a break cross-section with various fiber shapes. Both blends showed lower tensile strength and impact strength than the PLA/PBAT (30/70). After heat treatment, the PLA/PBAT blends showed high modulus of tensile and HDT because of a high degree of crystallization. The high degree of crystallization in the blends, which originated in the heat treatment, reduced their impact strength and elongation. However, the effect of high degree of crystallization on the PLA/PBAT (30/70) blend was small because of its sea-island morphology.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Kit Chee ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Mohd Faizal Abd Rahman ◽  
Buong Woei Chieng

Poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends were prepared via melt blending technique. Glycidyl methacrylate (GMA) was added as reactive compatibilizer to improve the interfacial adhesion between immiscible phases of PLA and PCL matrices. Tensile test revealed that optimum in elongation at break of approximately 327% achieved when GMA loading was up to 3wt%. Slight drop in tensile strength and tensile modulus at optimum ratio suggested that the blends were tuned to be deformable. Flexural studies showed slight drop in flexural strength and modulus when GMA wt% increases as a result of improved flexibility by finer dispersion of PCL in PLA matrix. Besides, incorporation of GMA in the blends remarkably improved the impact strength. Highest impact strength was achieved (160% compared to pure PLA/PCL blend) when GMA loading was up to 3 wt%. SEM analysis revealed improved interfacial adhesion between PLA/PCL blends in the presence of GMA. Finer dispersion and smooth surface of the specimens were noted as GMA loading increases, indicating that addition of GMA eventually improved the interfacial compatibility of the nonmiscible blend.


2018 ◽  
Vol 27 (2) ◽  
pp. 43-54 ◽  
Author(s):  
JR Robledo-Ortíz ◽  
AS Martín del Campo ◽  
EJ López-Naranjo ◽  
M Arellano ◽  
CF Jasso-Gastinel ◽  
...  

In this work, three different nanoclays (1.44P, 1.34MN, and Cloisite 15A) were used to reinforce an injection grade poly(lactic acid) (PLA). The nanocomposites (NCs) were prepared using three different nanoclay concentration levels (1, 3, and 5 wt%) in a twin-screw extruder. To evaluate their mechanical performance (static and dynamic tests) and thermal properties, the respective samples were obtained by injection molding. Results showed that the three nanoclays significantly increased the tensile and flexural modulus of the injection grade PLA. The 1.34MN NCs also showed improvement in the tensile strength. An increment in flexural strength was obtained with 1.34MN and 1.44P nanoclays, while with nanoclay 15A, the flexural strength decreased. Additionally, the use of 5 wt% of 1.44P nanoclay allowed an increase in impact strength while using 1.34MN and 15A nanoclays, the impact strength was similar to the one observed for pure PLA. In general, mechanodynamic analysis results showed that storage modulus increased with nanoclay content; while thermogravimetric analysis indicated that none of the nanoclays has a significant effect over the degradation temperature of pure PLA. Differential scanning calorimetry results showed that the crystallinity of PLA is enhanced with nanoclay inclusion. For 1.34MN NCs, X-ray diffraction observations exposed that the mineral clay relative intensity peaks disappeared indicating nanoclay exfoliation, which contributes to the increase in tensile and flexural strength in the NCs. Nevertheless for 1.44P and 15A nanoclays, an increase in the interlayer distance (intercalation) was detected.


2019 ◽  
Vol 40 (1) ◽  
pp. 38-48
Author(s):  
Mert Akgün ◽  
İhsan Başaran ◽  
Salih C. Suner ◽  
Ayhan Oral

Abstract The main goal of this study is to prepare antibacterial poly(lactic acid) (PLA) containing cinnamaldehyde and geraniol and to evaluate the antibacterial activity and assess the changes of physical properties of the PLA films. Cinnamaldehyde- and geraniol-incorporated (10%, 20%, 30%, and 50% v/w) PLA films were prepared via solution-casting. While preparing these films, plasticizers were not added to the matrix. Antibacterial activities of these films against Escherichia coli and Staphylococcus aureus were investigated by the disk diffusion method. Thermal degradation characteristics were analyzed via thermogravimetric analysis (TGA), glass transition, crystallization, and melting temperatures, and enthalpies of the films were determined from differential scanning calorimetry (DSC) scans. Tensile strength and elongation-at-break values of neat PLA and antibacterial-compound-containing films were evaluated and compared after the mechanical tests. Moreover, the changes in the polymer morphology were observed by SEM analysis, and opacity of the films was determined by UV-vis spectroscopy. Our results showed that both compounds provided antibacterial effect to the PLA, with cinnamaldehyde being more effective than geraniol. Moreover, plasticization effects of the compounds were confirmed by DSC analysis.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1529 ◽  
Author(s):  
Sisi Wang ◽  
Lode Daelemans ◽  
Rudinei Fiorio ◽  
Maling Gou ◽  
Dagmar R. D’hooge ◽  
...  

Based on differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, polarizing microscope (POM), and scanning electron microscopy (SEM) analysis, strategies to close the gap on applying conventional processing optimizations for the field of 3D printing and to specifically increase the mechanical performance of extrusion-based additive manufacturing of poly(lactic acid) (PLA) filaments by annealing and/or blending with poly(3-hydroxybutyrate) (PHB) were reported. For filament printing at 210 °C, the PLA crystallinity increased significantly upon annealing. Specifically, for 2 h of annealing at 100 °C, the fracture surface became sufficiently coarse such that the PLA notched impact strength increased significantly (15 kJ m−2). The Vicat softening temperature (VST) increased to 160 °C, starting from an annealing time of 0.5 h. Similar increases in VST were obtained by blending with PHB (20 wt.%) at a lower printing temperature of 190 °C due to crystallization control. For the blend, the strain at break increased due to the presence of a second phase, with annealing only relevant for enhancing the modulus.


2021 ◽  
Author(s):  
Mohamed BOUTI ◽  
Ratiba IRINISLIMANE ◽  
Naima Belhaneche-Bensemra

Abstract This study aims to improve the ductility of poly (lactic acid) (PLA). For that purpose, bioblends based on PLA and epoxidized vegetable oils (EVO) as bioplasticizers were prepared. Commercial sunflower oil was epoxidized and epoxidized sunflower oil (ESO) was used as plasticizer for PLA. To investigate ESO potential as plasticizer for PLA, its plasticizing effect was compared with commercial epoxidized soya bean oil (ESBO). The plasticizers (ESO or ESBO) were respectively compounded with PLA at 10, 20, 30, and 40 wt%. Mechanical (tensile and Shore D hardness), thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)) and morphological properties (optical microscopy and scanning electron microscopy (SEM)) were characterized. The results showed that the addition of ESO or ESBO to PLA decreased tensile strength and tensile modulus compared to neat PLA but increased elongation at break for which an optimum (9.02%, 15.55% and 33.67% for ESBO, ESO5.5% and ESO6.5% respectively) was reached at a content of 20 wt% of plasticizer. The structures of the obtained plasticized PLA were confirmed by FTIR spectroscopy. DSC showed a clear decrease in the glass transition temperature of PLA and SEM analysis proved successful modification on the PLA brittle morphology with addition of EVO. On the other hand, TGA results revealed significant increase in the thermal stability. Based on the results of this study, ESO exhibited promising results regarding


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 890
Author(s):  
Mateusz Barczewski ◽  
Olga Mysiukiewicz ◽  
Aleksander Hejna ◽  
Radosław Biskup ◽  
Joanna Szulc ◽  
...  

In this work, thermally expanded vermiculite (TE-VMT) was surface modified and used as a filler for composites with a polylactide (PLA) matrix. Modification of vermiculite was realized by simultaneous ball milling with the presence of two PLA chain extenders, aromatic carbodiimide (KI), and 4,4’-methylenebis(phenyl isocyanate) (MDI). In addition to analyzing the particle size of the filler subjected to processing, the efficiency of mechanochemical modification was evaluated by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The composites of PLA with three vermiculite types were prepared by melt mixing and subjected to mechanical, thermomechanical, thermal, and structural evaluation. The structure of composites containing a constant amount of the filler (20 wt%) was assessed using FTIR spectroscopy and SEM analysis supplemented by evaluating the final injection-molded samples’ physicochemical properties. Mechanical behavior of the composites was assessed by static tensile test and impact strength hardness measurements. Heat deflection temperature (HDT) test and dynamic thermomechanical analysis (DMTA) were applied to evaluate the influence of the filler addition and its functionalization on thermomechanical properties of PLA-based composites. Thermal properties were assessed by differential scanning calorimetry (DSC), pyrolysis combustion flow calorimetry (PCFC), and thermogravimetric analysis (TGA). The use of filler-reactive chain extenders (CE) made it possible to change the vermiculite structure and obtain an improvement in interfacial adhesion and more favorable filler dispersions in the matrix. This translated into an improvement in impact strength and an increase in thermo-mechanical stability and heat release capacity of composites containing modified vermiculites.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1851
Author(s):  
Hye-Seon Park ◽  
Chang-Kook Hong

Poly (l-lactic acid) (PLLA) is a promising biomedical polymer material with a wide range of applications. The diverse enantiomeric forms of PLLA provide great opportunities for thermal and mechanical enhancement through stereocomplex formation. The addition of poly (d-lactic acid) (PDLA) as a nucleation agent and the formation of stereocomplex crystallization (SC) have been proven to be an effective method to improve the crystallization and mechanical properties of the PLLA. In this study, PLLA was blended with different amounts of PDLA through a melt blending process and their properties were calculated. The effect of the PDLA on the crystallization behavior, thermal, and mechanical properties of PLLA were investigated systematically by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), polarized optical microscopy (POM), dynamic mechanical analysis (DMA), and tensile test. Based on our findings, SC formed easily when PDLA content was increased, and acts as nucleation sites. Both SC and homo crystals (HC) were observed in the PLLA/PDLA blends. As the content of PDLA increased, the degree of crystallization increased, and the mechanical strength also increased.


2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.


2014 ◽  
Vol 970 ◽  
pp. 312-316
Author(s):  
Sujaree Tachaphiboonsap ◽  
Kasama Jarukumjorn

Thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend and thermoplastic starch (TPS)/poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend were prepared by melt blending method. PLA grafted with maleic anhydride (PLA-g-MA) was used as a compatibilizer to improve the compatibility of the blends. As TPS was incorporated into PLA, elongation at break was increased while tensile strength, tensile modulus, and impact strength were decreased. Tensile properties and impact properties of TPS/PLA blend were improved with adding PLA-g-MA indicating the enhancement of interfacial adhesion between PLA and TPS. With increasing PBAT content, elongation at break and impact strength of TPS/PLA blends were improved. The addition of TPS decreased glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of PLA. Tgand Tcof TPS/PLA blend were decreased by incorporating PLA-g-MA. However, the presence of PBAT reduced Tcof TPS/PLA blend. Thermal properties of TPS/PLA/PBAT blends did not change with increasing PBAT content. SEM micrographs revealed that the compatibilized TPS/PLA blends exhibited finer morphology when compared to the uncompatibilized TPS/PLA blend.


Sign in / Sign up

Export Citation Format

Share Document