Antibiotic resistance and random amplified polymorphic DNA typing of Klebsiella pneumoniae isolated from clinical and water samples

2021 ◽  
Author(s):  
Shobha Giri ◽  
Malathi Shekar ◽  
A. Veena Shetty ◽  
Puneeth T. G ◽  
Avinash K. Shetty

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 698
Author(s):  
Sónia Gomes ◽  
Conceição Fernandes ◽  
Sandra Monteiro ◽  
Edna Cabecinha ◽  
Amílcar Teixeira ◽  
...  

The inappropriate use of antibiotics, one of the causes of the high incidence of antimicrobial-resistant bacteria isolated from aquatic ecosystems, represents a risk for aquatic organisms and the welfare of humans. This study aimed to determine the antimicrobial resistance rates among riverine Aeromonas spp., taken as representative of the autochthonous microbiota, to evaluate the level of antibacterial resistance in the Tua River (Douro basin). The prevalence and degree of antibiotic resistance was examined using motile aeromonads as a potential indicator of antimicrobial susceptibility for the aquatic environment. Water samples were collected from the middle sector of the river, which is most impacted area by several anthropogenic pressures. Water samples were plated on an Aeromonas-selective agar, with and without antibiotics. The activity of 19 antibiotics was studied against 30 isolates of Aeromonas spp. using the standard agar dilution susceptibility test. Antibiotic resistance rates were fosfomycin (FOS) 83.33%, nalidixic acid (NA) 60%, cefotaxime (CTX) 40%, gentamicin (CN) 26.67%, tobramycin (TOB) 26.67%, cotrimoxazole (SXT) 26.67%, chloramphenicol (C) 16.67%, and tetracycline (TE) 13.33%. Some of the nalidixic acid-resistant strains were susceptible to fluoroquinolones. Multiple resistance was also observed (83.33%). The environmental ubiquity, the natural susceptibility to antimicrobials and the zoonotic potential of Aeromonas spp. make them optimal candidates for studying antimicrobial resistance (AMR) in aquatic ecosystems. Aquatic environments may provide an ideal setting for the acquisition and dissemination of antibiotic resistance because anthropogenic activities frequently impact them. The potential risk of multi- and pan-resistant bacteria transmission between animals and humans should be considered in a “One Health—One World” concept.







1999 ◽  
Vol 123 (2) ◽  
pp. 225-232 ◽  
Author(s):  
S. RADU ◽  
Y. K. HO ◽  
S. LIHAN ◽  
YUHERMAN ◽  
G. RUSUL ◽  
...  

A total of 31 strains of Vibrio cholerae O1 (10 from outbreak cases and 7 from surface water) and non-O1 (4 from clinical and 10 from surface water sources) isolated between 1993 and 1997 were examined with respect to presence of cholera enterotoxin (CT) gene by PCR-based assays, resistance to antibiotics, plasmid profiles and random amplified polymorphic DNA (RAPD) analysis. All were resistant to 9 or more of the 17 antibiotics tested. Identical antibiotic resistance patterns of the isolates may indicate that they share a common mode of developing antibiotic resistance. Furthermore, the multiple antibiotic resistance indexing showed that all strains tested originated from high risk contamination. Plasmid profile analysis by agarose gel electrophoresis showed the presence of small plasmids in 12 (7 non-O1 and 5 O1 serotypes) with sizes ranging 1·3–4·6 MDa. The CT gene was detected in all clinical isolates but was present in only 14 (6 O1 serotype and 8 non-O1 serotype) isolates from environmental waters. The genetic relatedness of the clinical and environmental Vibrio cholerae O1 and non-O1 strains was investigated by RAPD fingerprinting with four primers. The four primers generated polymorphisms in all 31 strains of Vibrio cholerae tested, producing bands ranging from <250 to 4500 bp. The RAPD profiles revealed a wide variability and no correlation with the source of isolation. This study provides evidence that Vibrio cholerae O1 and non-O1 have significant public health implications.



2020 ◽  
Vol 8 (2) ◽  
pp. 50-55
Author(s):  
Narjes Mohammadi Bandari ◽  
Hossein Keyvani ◽  
Mohammad Abootaleb ◽  
◽  
◽  
...  


2021 ◽  
Author(s):  
Golnaz Mobasseri ◽  
Thong Kwai Lin ◽  
Cindy Shuan Ju Teh

Abstract Multidrug-resistant (MDR) Klebsiella pneumoniae (K. pneumoniae) poses a serious public health threat. K. pneumoniae strains that produce extended-spectrum beta-lactamases (ESBL) are becoming increasingly reported in nosocomial and community-acquired infections. Besides resistance genes, integrons, and plasmids, altered membrane permeability caused by porin loss and energy-dependent efflux have also contributed to antibiotic resistance in K. pneumoniae. The objective of this study was to determine the correlation between the reduction of antibiotic susceptibility and overexpression of efflux pump as well as the lack of outer membrane proteins (OMPs) among clinical ESBLs resistant K. pneumoniae. The expression levels of ramA, acrA, ompK35 and ompK36 in 12 MDR K. pneumoniae strains with varying MICs levels were analyzed using quantitative real time-Polymerase Chain Reaction (qRT-PCR). The role of efflux pump on antibiotic resistance was also studied by using minimum inhibitory concentration (MICs) method with//without efflux pump inhibitor. The result indicated that the strains with highest resistance to cefotaxime showed the lowest level of ompK35 and ompK36 genes expression while the strains with lowest MIC level of resistance to cefotaxime showed the highest level of expression of acrA and ramA. Our finding also revealed the effect of efflux pump inhibitor phenyl-arginine-b-naphthylamide (PAβN) on the MIC levels of ceftazidime, amoxicillin-clavulanate and cefotaxime which were significantly reduced around 1–7 folds MIC levels. These results suggest that Efflux pump system and deficiently of OMPs contributing role in antibiotic susceptibility which should be taken seriously to prevent the treatment failure due to antimicrobial resistance.



Author(s):  
O. R. Umeh ◽  
E. I. Chukwura ◽  
E. L. Okoye ◽  
E. M. Ibo ◽  
P. I. Egwuatu ◽  
...  

Medicinal plants are used by almost 80% of the world’s population for their basic health care because of their low cost and ease in availability. In the last few decades, many bacteria have continued to show increasing resistance against current antibiotics. Aim: In this study, phytochemical screening and antibacterial effects of conventional antibiotics, garlic and ginger on test isolates from fish pond water samples were evaluated between May-November, 2019. Methods: Standard methods for phytochemical screening and antibacterial analysis were employed. Results: The results showed that amongst the antibiotics used for susceptibility test, Amoxicilin (30 µg) was mostly resisted by all the bacterial isolates except Staphylococcus aureus, Vibrio cholerae, Vibrio parahaemolyticus and Salmonella typhi while erythromycin (10 µg) was unable to inhibit Bacillus subtilis. Ciprofloxacin (10 µg) and pefloxacin (10 µg) inhibited the growth of all the isolates except Pseudomonas aeruginosa. The test isolates showed variable susceptibility to the garlic and ginger extracts (ethanol, methanol and hot water). The extracts inhibited the isolates in descending order; ginger ethanol > ginger methanol > garlic methanol > ginger hot water > garlic ethanol > garlic hot water. Vibrio parahaemolyticus, Vibrio cholerae and Staphylococcus aureus showed little resistant to the extracts while these extracts showed better activity on Klebsiella pneumoniae and Proteus mirabilis. Synergistic effect of garlic and ginger (500mg/ml) inhibited the growth of all the isolates with ethanol extracts having the highest zone diameter (29 mm) on Klebsiella pneumoniae and Proteus mirabilis while hot water extracts had the least zone of inhibition (18 mm) on Acinetobacter calcoaceticus and Vibrio parahaemolyticus. The minimum inhibitory and bactericidal concentration for ethanol, methanol and hot water extracts ranged from 31.25mg/ml to 62.5mg/ml and 62.5mg/ml to 125mg/ml respectively. Conclusion: The outcomes of susceptibility experiment depicted that ethanol and methanol extracts of garlic and ginger (each alone and in combination) showed more inhibitory effect than aqueous extracts and also the combination of ethanol, methanol and aqueous extracts resulted in inhibitory effect greater than each of the extracts when used singly. The use of ginger and garlic for control of fish pathogens appears to be justified.



2011 ◽  
Vol 55 (9) ◽  
pp. 4267-4276 ◽  
Author(s):  
Vinod Kumar ◽  
Peng Sun ◽  
Jessica Vamathevan ◽  
Yong Li ◽  
Karen Ingraham ◽  
...  

ABSTRACTThere is a global emergence of multidrug-resistant (MDR) strains ofKlebsiella pneumoniae, a Gram-negative enteric bacterium that causes nosocomial and urinary tract infections. While the epidemiology ofK. pneumoniaestrains and occurrences of specific antibiotic resistance genes, such as plasmid-borne extended-spectrum β-lactamases (ESBLs), have been extensively studied, only four complete genomes ofK. pneumoniaeare available. To better understand the multidrug resistance factors inK. pneumoniae, we determined by pyrosequencing the nearly complete genome DNA sequences of two strains with disparate antibiotic resistance profiles, broadly drug-susceptible strain JH1 and strain 1162281, which is resistant to multiple clinically used antibiotics, including extended-spectrum β-lactams, fluoroquinolones, aminoglycosides, trimethoprim, and sulfamethoxazoles. Comparative genomic analysis of JH1, 1162281, and other publishedK. pneumoniaegenomes revealed a core set of 3,631 conserved orthologous proteins, which were used for reconstruction of whole-genome phylogenetic trees. The close evolutionary relationship between JH1 and 1162281 relative to otherK. pneumoniaestrains suggests that a large component of the genetic and phenotypic diversity of clinical isolates is due to horizontal gene transfer. Using curated lists of over 400 antibiotic resistance genes, we identified all of the elements that differentiated the antibiotic profile of MDR strain 1162281 from that of susceptible strain JH1, such as the presence of additional efflux pumps, ESBLs, and multiple mechanisms of fluoroquinolone resistance. Our study adds new and significant DNA sequence data onK. pneumoniaestrains and demonstrates the value of whole-genome sequencing in characterizing multidrug resistance in clinical isolates.



Sign in / Sign up

Export Citation Format

Share Document