VARIABILITY IN E-SELECTIN EXPRESSION, mRNA LEVELS AND sE-SELECTIN RELEASE BETWEEN ENDOTHELIAL CELL LINES AND PRIMARY ENDOTHELIAL CELLS

2000 ◽  
Vol 24 (2) ◽  
pp. 91-99 ◽  
Author(s):  
H Galley
Blood ◽  
1995 ◽  
Vol 86 (7) ◽  
pp. 2767-2773 ◽  
Author(s):  
NW Lukacs ◽  
RM Strieter ◽  
V Elner ◽  
HL Evanoff ◽  
MD Burdick ◽  
...  

The extravasation of leukocytes from the lumen of the vessel to a site of inflammation requires specific binding events. The interaction of leukocytes with endothelium, via specific receptors, may provide intracellular signals that activate extravasating cells. In the present study, we have investigated the production of chemokines, interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1) during monocyte: endothelial cell interactions. Both unstimulated and interferon-gamma (IFN-gamma)-prestimulated human umbilical vein endothelial cells (HUVEC) produced low constitutive levels of IL-8 and MCP-1. The addition of enriched monocytes with unstimulated HUVEC resulted in synergistic increases in production of both IL-8 and MCP-1. Monocytes cultured with IFN-gamma-preactivated HUVECs demonstrated little additional increase in IL-8 and MCP-1 production in coculture assays compared with unstimulated HUVEC. Northern blot analysis paralleled the protein data, demonstrating upregulated expression of IL-8 and MCP-1 mRNA in stimulated and unstimulated coculture assays. Culture of enriched monocytes and endothelial cells in transwells demonstrated no increases in IL-8 or MCP-1, indicating the necessity for cellular contact for chemokine production. In previous investigations, we have demonstrated that increased monocyte-derived MIP-1 alpha production was induced by intracellular adhesion molecule-1 (ICAM-1) interactions on activated HUVECs. In contrast, addition of anti-ICAM-1 monoclonal antibodies (MoAbs) did not diminish the production of IL-8 and MCP-1 in the present study. Furthermore, neither antibodies to IL-1 nor tumor necrosis factor (TNF) diminished the production of either IL-8 or MCP- 1. However, when soluble matrix proteins were added to the coculture to block cellular interactions, the chemokine protein and mRNA levels were significantly decreased. IL-8 production was decreased by both soluble collagen and fibronectin, whereas MCP-1 was decreased by only soluble collagen, suggesting differential activation pathways. These results indicate that IL-8 and MCP-1 production are increased during monocyte and endothelial cell interactions in part due to matrix protein binding mechanisms. This mechanism may serve a role in cell activation, production of chemokines, as well as extravasation and recruitment of additional leukocytes during inflammatory responses.


2008 ◽  
Vol 55 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Karol Szczepanek ◽  
Claudine Kieda ◽  
Joanna Cichy

Tissue-specific heterogeneity of endothelial cells, both structural and functional, plays a crucial role in physiologic as well as pathologic processes, including inflammation, autoimmune diseases and tumor metastasis. This heterogeneity primarily results from the differential expression of adhesion molecules that are involved in the interactions between endothelium and circulating immune cells or disseminating tumor cells. Among these molecules present on endothelial cells is hyaluronan (HA), a glycosaminoglycan that contributes to primary (rolling) interactions through binding to its main receptor CD44 expressed on leukocytes and tumor cells. While the regulation of CD44 expression and function on either leukocytes or tumor cells has been well characterized, much less is known about the ability of endothelial cells to express HA on their surface. Therefore, in these studies we analyzed HA levels on tissue-specific endothelium. We used endothelial cell lines of different origin, including lung, skin, gut and lymph nodes that had been established previously as model lines to study interactions between the endothelium and leukocytes/tumor cells. Our results indicate that HA is accumulated on the surface of all endothelial cells examined. Moreover, retention of endogenous HA differs between the lines and may depend on their tissue origin. Analysis of binding of exogenous HA reveals the presence of specific HA binding sites on all endothelial cell lines tested. However, the retention of endogenous HA and the binding of exogenous HA is mediated through a CD44-independent mechanism.


Blood ◽  
2010 ◽  
Vol 115 (16) ◽  
pp. 3407-3412 ◽  
Author(s):  
Shai Y. Schubert ◽  
Alejandro Benarroch ◽  
Juan Monter-Solans ◽  
Elazer R. Edelman

Abstract Direct interaction of unactivated primary monocytes with endothelial cells induces a mitogenic effect in subconfluent, injured endothelial monolayers through activation of endothelial Met. We now report that monocytes' contact-dependent mitogenicity is controlled by activation-mediated regulation of hepatocyte growth factor. Direct interaction of unactivated monocytes with subconfluent endothelial cells for 12 hours resulted in 9- and 120-fold increase in monocyte tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) mRNA levels and bitemporal spike in hepatocyte growth factor that closely correlates with endothelial Met and extracellular signal-related kinase (ERK) phosphorylation. Once activated, monocytes cannot induce a second wave of endothelial cell proliferation and endothelial Met phosphorylation and soluble hepatocyte growth factor levels fall off. Monocyte-induced proliferation is dose dependent and limited to the induction of a single cell cycle. Monocytes retain their ability to activate other endothelial cells for up to 8 hours after initial interaction, after which they are committed to the specific cell. There is therefore a profoundly sophisticated mode of vascular repair. Confluent endothelial cells ensure vascular quiescence, whereas subconfluence promotes vessel activation. Simultaneously, circulating monocytes stimulate endothelial cell proliferation, but lose this potential once activated. Such a system provides for the fine balance that can restore vascular and endothelial homeostasis with minimal overcompensation.


2003 ◽  
Vol 84 (3) ◽  
pp. 687-695 ◽  
Author(s):  
Lei-Qing Zhang ◽  
Ya-Fang Mei ◽  
Göran Wadell

Adenoviruses are promising vectors for human cancer gene therapy. However, the extensively used adenoviruses serotypes 2 and 5 (Ad2 and Ad5) from species C have a major disadvantage in being highly prevalent; thus, most adults have an immunity against the two viruses. Furthermore, the expression of coxsackievirus and adenovirus receptors for Ad2 and Ad5 varies in different cells. This study aims to identify adenovirus serotypes with specific tropism for endothelial cells and epithelial tumour cells. Comparison of the binding affinities of Ad31, Ad11, Ad5, Ad37, Ad4 and Ad41, belonging to species A–F, respectively, to established cell lines of hepatoma (HepG2), breast cancer (CAMA and MG7), prostatic cancer (DU145 and LNCaP) and laryngeal cancer (Hep2), as well as to endothelial cells (HMEC), was carried out by flow cytometric analysis. Ad11 from species B showed markedly higher binding affinity than Ad5 for the endothelial cell line and all carcinoma cell lines studied. Ad4 showed a specific binding affinity for hepatoma cells and laryneal carcinoma cells. The ability of Ad11, Ad4 and Ad5 to be expressed in hepatoma, breast cancer and endothelial cell lines was studied by immunostaining and 35S-labelling of viral proteins in infected cells. Ad11 and Ad4 manifested a higher proportion of infected cells and a higher degree of hexon expression than Ad5.


Blood ◽  
1994 ◽  
Vol 83 (11) ◽  
pp. 3206-3217 ◽  
Author(s):  
N Dubois-Stringfellow ◽  
A Jonczyk ◽  
VL Bautch

Abstract Fibrinolytic activity and its relation to morphogenesis was investigated in several transformed murine endothelial cell lines and primary cultures of endothelial cells. Two in vitro systems, fibrin gels and Matrigel (Collaborative Research, Bedford, MA), were used. Fibrin gels model a fibrin-rich extracellular matrix that frequently supports neovascularization in vivo, and Matrigel models the basement membrane surrounding quiescent endothelial cells in vivo. The transformed endothelial cell lines have higher levels of plasminogen activator (PA) mRNA than primary cultures of endothelial cells, and an increased PA-mediated proteolytic activity was correlated with formation of cysts in fibrin gels. Addition of neutralizing anti- urokinase antibodies, plasminogen depletion, or addition of a plasmin inhibitor prevented cyst formation. Addition of plasminogen restored the ability to form cysts in the plasminogen-depleted system. Normal endothelial cells organized into capillary-like structures in fibrin gels regardless of manipulations affecting the fibrinolytic pathway. In Matrigel, both transformed and primary cultures of endothelial cells rapidly formed a capillary-like network that was not affected by plasminogen depletion or addition of plasmin inhibitors. Thus, elements of the fibrinolytic pathway necessary for cyst formation are not critical in capillary-like structure formation on a reconstituted basement membrane. These results suggest that plasmin is essential for hemangioma formation but is not critical to the organizational behavior of normal endothelial cells.


Blood ◽  
2010 ◽  
Vol 116 (13) ◽  
pp. 2395-2401 ◽  
Author(s):  
Jan Kazenwadel ◽  
Michael Z. Michael ◽  
Natasha L. Harvey

Abstract The specification of arterial, venous, and lymphatic endothelial cell fate is critical during vascular development. Although the homeobox transcription factor, Prox1, is crucial for the specification and maintenance of lymphatic endothelial cell identity, little is known regarding the mechanisms that regulate Prox1 expression. Here we demonstrate that miR-181a binds the 3′ untranslated region of Prox1, resulting in translational inhibition and transcript degradation. Increased miR-181a activity in primary embryonic lymphatic endothelial cells resulted in substantially reduced levels of Prox1 mRNA and protein and reprogramming of lymphatic endothelial cells toward a blood vascular phenotype. Conversely, treatment of primary embryonic blood vascular endothelial cells with miR-181a antagomir resulted in increased Prox1 mRNA levels. miR-181a expression is significantly higher in embryonic blood vascular endothelial cells compared with lymphatic endothelial cells, suggesting that miR-181 activity could be an important mechanism by which Prox1 expression is silenced in the blood vasculature during development. Our work is the first example of a microRNA that targets Prox1 and has implications for the control of Prox1 expression during vascular development and neo-lymphangiogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sharon Harel ◽  
Veronica Sanchez ◽  
Alaa Moamer ◽  
Javier E. Sanchez-Galan ◽  
Mohammad N. Abid Hussein ◽  
...  

BackgroundAngiopoietin-1 (Ang-1) is the main ligand of Tie-2 receptors. It promotes endothelial cell (EC) survival, migration, and differentiation. Little is known about the transcription factors (TFs) in ECs that are downstream from Tie-2 receptors.ObjectiveThe main objective of this study is to identify the roles of the ETS family of TFs in Ang-1 signaling and the angiogenic response.MethodsIn silico enrichment analyses that were designed to predict TF binding sites of the promotors of eighty-six Ang-1-upregulated genes showed significant enrichment of ETS1, ELK1, and ETV4 binding sites in ECs. Human umbilical vein endothelial cells (HUVECs) were exposed for different time periods to recombinant Ang-1 protein and mRNA levels of ETS1, ELK1, and ETV4 were measured with qPCR and intracellular localization of these transcription factors was assessed with immunofluorescence. Electrophoretic mobility shift assays and reporter assays were used to assess activation of ETS1, ELK1, and ETV4 in response to Ang-1 exposure. The functional roles of these TFs in Ang-1-induced endothelial cell survival, migration, differentiation, and gene regulation were evaluated by using a loss-of-function approach (transfection with siRNA oligos).ResultsAng-1 exposure increased ETS1 mRNA levels but had no effect on ELK1 or ETV4 levels. Immunostaining revealed that in control ECs, ETS1 has nuclear localization whereas ELK1 and ETV4 are localized to the nucleus and the cytosol. Ang-1 exposure increased nuclear intensity of ETS1 protein and enhanced nuclear mobilization of ELK1 and ETV4. Selective siRNA knockdown of ETS1, ELK1, and ETV4 showed that these TFs are required for Ang-1-induced EC survival and differentiation of cells, while ETS1 and ETV4 are required for Ang-1-induced EC migration. Moreover, ETS1, ELK1, and ETV4 knockdown inhibited Ang-1-induced upregulation of thirteen, eight, and nine pro-angiogenesis genes, respectively.ConclusionWe conclude that ETS1, ELK1, and ETV4 transcription factors play significant angiogenic roles in Ang-1 signaling in ECs.


Sign in / Sign up

Export Citation Format

Share Document