High temperature automotive electronics

1997 ◽  
pp. 13-36
Author(s):  
J. C. Erskine ◽  
R. G. Carter ◽  
J. A. Hearn ◽  
H. L. Fields ◽  
J. M. Himelick ◽  
...  
2021 ◽  
Author(s):  
Pradeep Lall ◽  
Sungmo Jung

Abstract High reliability harsh environment applications necessitate a better understanding of the acceleration factors under operating stresses. Automotive electronics has transitioned to the use of copper wire for first level interconnects. A number of copper wire formulations have emerged including palladium coated copper and gold-flash palladium coated copper. The corrosion reliability of copper wire bonds in high temperature conditions is not yet fully understood. The EMC used to encapsulate chips and interconnects can vary widely in formulation, including pH, porosity, diffusion rate, composition of contaminants and contaminant concentration. To realistically represent the expected wirebond reliability, there is need for a predictive model that can account for environmental conditions, operating conditions, and exposure to EMCs. In this paper, different EMCs were studied in a high-temperature-current environment with temperature range of 60°C–100°C under current of 0.2A–1A. The diffusion kinetics based on the Nernst-Planck Equation for migration of the chlorine ions has been coupled with the Butler-Volmer equation for corrosion kinetics to create a Multiphysics model. Polarization curves have been measured for copper, aluminum and intermetallics under a number of pH values, and chlorine-ion concentrations. Tafel parameters have been extracted through measurements of the polarization curves.


2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000083-000088
Author(s):  
C. Su ◽  
B. J. Blalock ◽  
S. K. Islam ◽  
L. Zuo ◽  
L. M. Tolbert

The rapid growth of the hybrid electric vehicles (HEVs) has been driving the demand of high temperature automotive electronics target for the engine compartment, power train, and brakes where the ambient temperature normally exceeds 150°C. An operational transconductance amplifier (OTA) is an essential building block of various analog circuits such as data converters, instrumentation systems, linear regulators, etc. This work presents a high temperature folded cascode operational transconductance amplifier designed and fabricated in a commercially available 0.8-μm BCD-on-SOI process. SOI processes offer several orders of magnitude smaller junction leakage current than bulk-CMOS processes at temperatures beyond 150°C. This amplifier is designed for a high temperature linear voltage regulator; the higher open-loop gain of this amplifier will enhance the overall performance of a linear regulator. In addition, the lower current consumption of the OTA is critical for improving the current efficiency of the linear regulator and reducing the power dissipation at elevated temperature. A PMOS input pair folded cascode OTA topology had been selected in this work, PMOS input pair offers wider ICMR (input common-mode range) and empirically lower flicker noise compared to its NMOS counterpart. By cascoding current mirror load at the output node, the folded cascode OTA obtains higher voltage gain than the symmetrical OTA topology. The PSRR (power supply rejection ratio) is also improved. A on-chip temperature stable current reference is employed to bias the amplifier. The amplifier consumes less than 65μA bias current at 175°C. The core layout area of the amplifier is 0.16mm2 (400 μm × 400 μm).


Author(s):  
Richard R. Grzybowski ◽  
Ben Gingrich

Advances in silicon-on-insulator (SOI) integrated circuit technology and the steady development of wider band gap semiconductors like silicon carbide are enabling the practical deployment of high temperature electronics. High temperature civilian and military electronics applications include distributed controls for aircraft, automotive electronics, electric vehicles and instrumentation for geothermal wells, oil well logging and nuclear reactors. While integrated circuits are key to the realization of complete high temperature electronic systems, passive components including resistors, capacitors, magnetics and crystals are also required. This paper will present characterization data obtained from a number of silicon high temperature integrated evaluated over a range of elevated temperatures and aged at a selected high temperature. This paper will also present a representative cross section of high temperature passive component characterization data for device types needed by many applications. Device types represented will include both small signal and power resistors and capacitors. Specific problems encountered with the employment of these devices in harsh environments will be discussed for each family of components. The goal in presenting this information is to demonstrate the viability of a significant number of commercially available silicon integrated circuits and passive components that operate at elevated temperatures as well as to encourage component suppliers to continue to optimize a selection of their product offerings for operation at higher temperatures. In addition, systems designers will be encouraged to view this information with an eye toward the conception and implementation of reliable and affordable high temperature systems.


2014 ◽  
Vol 2014 (DPC) ◽  
pp. 001818-001850 ◽  
Author(s):  
Glenn G. Daves

The long-term trend in automobiles has been increasing electronics content over time. This trend is expected to continue and drives diverse functional, form factor, and reliability requirements. These requirements, in turn, are leading to changes in the package types selected and the performance specifications of the packages used for automotive electronics. Several examples will be given. This abstract covers the development of a distributed high temperature electronics demonstrator for integration with sensor elements to provide digital outputs that can be used by the FADEC (Full Authority Digital Electronic Control) system or the EHMS (Engine Health Monitoring System) on an aircraft engine. This distributed electronics demonstrator eliminates the need for the FADEC or EHMS to process the sensor signal, which will assist in making the overall system more accurate and efficient in processing only digital signals. This will offer weight savings in cables, harnesses and connector pin reduction. The design concept was to take the output from several on-engine sensors, carry out the signal conditioning, multiplexing, analogue to digital conversion and data transmission through a serial data bus. The unit has to meet the environmental requirements of DO-160 with the need to operate at 200°C, with short term operation at temperatures up to 250°C. The work undertaken has been to design an ASIC based on 1.0 μm Silicon on Insulator (SOI) device technology incorporating sensor signal conditioning electronics for sensors including resistance temperature probes, strain gauges, thermocouples, torque and frequency inputs. The ASIC contains analogue multiplexers, temperature stable voltage band-gap reference and bias circuits, ADC, BIST, core logic, DIN inputs and two parallel ARINC 429 serial databuses. The ASIC was tested and showed to be functional up to a maximum temperature of 275°C. The ASIC has been integrated with other high temperature components including voltage regulators, a crystal oscillator, precision resistors, silicon capacitors within a hermetic hybrid package. The hybrid circuit has been assembled within a stainless steel enclosure with high temperature connectors. The high temperature electronics demonstrator has been demonstrated operating from −40°C to +250°C. This work has been carried out under the EU Clean Sky HIGHTECS project with the Project being led by Turbomeca (Fr) and carried out by GE Aviation Systems (UK), GE Research – Munich (D) and Oxford University (UK).


2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000299-000306
Author(s):  
Chris Reynolds

Abstract As new temperature critical applications continue to emerge, the need for components capable of enduring temperatures up to and exceeding 200°C is increasing. Advanced down-hole electronics, underhood automotive and aerospace systems rely on components delivering optimal performance while subject to extreme environmental conditions. This paper will discuss the design advances in tantalum technology that have given rise to innovative devices that provide the enabling technology for a new generation of applications. Traditionally, hermetically sealed “wet” axial tantalum capacitors (utilizing a non-solid electrolyte that promotes self-healing and long lifetime), have been used for both high bulk capacitance (to 5,600uF) and high voltage applications (to 125VDC). In recent years, this technology has been developed to meet the 200°C operational requirements of harsher environment industrial applications. For lower operating voltages (6v – 25v), SMD packages are preferred, and for several years, 200°C rated high temperature solid tantalum chip devices have been the preferred technology over “wet” tantalum for capacitances to 220uF, being smaller size, lower cost and having the combination of lower ESR and higher frequency response. More recently, hermetic SMD packaging has been developed for SMD solid tantalum capacitors. The hermetic seal enables the internal element to be operated in an inert gas environment, while offering superior resistance to moisture ingress. These two factors enable operation to 230°C, with higher capacitance (up to 330uF) and voltage (up to 63vDC) ranges. Both molded and hermetic high temperature SMD solid tantalum capacitors have been developed to be compatible with high temperature pcb or hybrid circuit assembly processes, with a range of termination finishes compatible with HMP solder, epoxy or wire bonding. Their design also harsh mechanical environment shock & vibration. This paper will discuss the evolution in materials, design and testing for each of these technologies, along with the considerations taken into account to give maximum compatibility with emerging requirements in high temperature and harsh environment applications, with emphasis on down-hole oil exploration, aerospace and military systems and underhood automotive electronics.


2019 ◽  
Vol 2019 (1) ◽  
pp. 000524-000529
Author(s):  
Noritoshi Araki ◽  
Motoki Eto ◽  
Takumi Ohkabe ◽  
Teruo Haibara ◽  
Takashi Yamada ◽  
...  

Abstract In this paper, a new type of silver (Ag) alloy bonding wire is introduced, and its bonding property and long term reliability are demonstrated. The new Ag wire, called GX2s, is developed as a cost-effective alternative to gold (Au) wire targeting at automotive electronics. The wire material is doped with added element, and its electrical resistivity is much lower than the conventional palladium (Pd) doped Ag wire. Highly accelerated stress test (HAST) and high temperature storage life (HTSL) test were carried out along with other bonding evaluations. The results show that GX2s has good bonding property and excellent long term bond reliability. Microstructural analyses of bond interface after the reliability tests were also conducted to investigate its improving mechanism. GX2s is a suitable alternative to Au wire for many applications including high temperature automotive devices.


Author(s):  
D Ebenezer ◽  
SR Koteswara Rao ◽  
S Vijayan ◽  
R Rajeswari

Mg-Zn alloys are promising candidates for their application in automotive, electronics and aerospace applications. For their successful application, one of the performance parameters that needs to be evaluated is their creep behavior at elevated temperatures. Hence this paper evaluates the high temperature creep behavior of wrought ZM21 magnesium alloy by impression test The tests were performed under constant temperature and stress. A flat ended cylindrical punch was used to create impressions. The temperature was varied between 398 K and 598 K while the stresses were varied from 200 MPa to 500 MPa (normalized stress: 0.014 ≤  σimp/ G ≥ 0.032). A power-law creep deformation was assumed to calculate creep exponent and activation energy using the steady state minimum impression velocity obtained from impression tests. The creep behavior was analyzed with the help of impression creep curves and plastic deformation was analyzed with the help of micrographs. It was found that creep exponent varied between 4.5 and 6 and activation energy between 73.28 and 113.35 kJ/mol were obtained. From the study it was concluded that the creep mechanism involved was pipe-diffusion-controlled dislocation climb.


2011 ◽  
Vol 51 (9-11) ◽  
pp. 1938-1942 ◽  
Author(s):  
D.G. Yang ◽  
F.F. Wan ◽  
Z.Y. Shou ◽  
W.D. van Driel ◽  
H. Scholten ◽  
...  

1999 ◽  
Vol 121 (4) ◽  
pp. 622-628 ◽  
Author(s):  
R. R. Grzybowski ◽  
B. Gingrich

Advances in silicon-on-insulator (SOI) integrated circuit technology and the steady development of wider band gap semiconductors like silicon carbide are enabling the practical deployment of high temperature electronics. High temperature civilian and military electronics applications include distributed controls for aircraft, automotive electronics, electric vehicles and instrumentation for geothermal wells, oil well logging, and nuclear reactors. While integrated circuits are key to the realization of complete high temperature electronic systems, passive components including resistors, capacitors, magnetics, and crystals are also required. This paper will present characterization data obtained from a number of silicon high temperature integrated evaluated over a range of elevated temperatures and aged at a selected high temperature. This paper will also present a representative cross section of high temperature passive component characterization data for device types needed by many applications. Device types represented will include both small signal and power resistors and capacitors. Specific problems encountered with the employment of these devices in harsh environments will be discussed for each family of components. The goal in presenting this information is to demonstrate the viability of a significant number of commercially available silicon integrated circuits and passive components that operate at elevated temperatures as well as to encourage component suppliers to continue to optimize a selection of their product offerings for operation at higher temperatures. In addition, systems designers will be encouraged to view this information with an eye towards the conception and implementation of reliable and affordable high temperature systems.


Sign in / Sign up

Export Citation Format

Share Document