Secondary Metabolites and Environmental Stress in Plants: Biosynthesis, Regulation, and Function

Author(s):  
Mohammad Babar Ali
Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2083
Author(s):  
Kaige Zhang ◽  
Yifan Jiang ◽  
Hongwei Zhao ◽  
Tobias G. Köllner ◽  
Sumei Chen ◽  
...  

Roots provide anchorage and enable the absorption of water and micronutrients from the soil for plants. Besides these essential functions, roots are increasingly being recognized as an important organ for the production of diverse secondary metabolites. The goal of this study was to investigate the chemical composition and function of terpenoid secondary metabolites in roots of different cultivars of the popular ornamental plant Chrysanthemum morifolium Ramat. Although C. morifolium is known for rich production of secondary metabolites in its flower heads and leaves, the diversity of secondary metabolites in roots remains poorly characterized. In this study, 12 cultivars of C. morifolium were selected for comparative analysis. From their roots, a total of 20 terpenoids were detected, including four monoterpenes, 15 sesquiterpenes, and one diterpene. The cultivar ‘She Yang Hong Xin Ju’ exhibited the highest concentration of total terpenoids at approximately 730 µg·g−1 fresh weight. Most cultivars contained sesquiterpenes as the predominant terpenoids. Of them, (E)-β-farnesene was detected in all cultivars. Based on their terpenoid composition, the 12 cultivars were planed into four groups. To gain insights into the function of root secondary metabolites, we performed bioassays to assess their effects on growth of three species of pathogenic fungi: Fusarium oxysporum, Magnaporthe oryzae, and Verticillium dahliae. Significant variability in antifungal activity of the root extracts among different cultivars were observed. The cultivar ‘Xiao Huang Ju’ was the only cultivar that had significant inhibitory effects on all three species of fungi. Our study reveals the diversity of terpenoids in roots of C. morifolium and their function as a chemical defense against fungi.


2019 ◽  
Vol 7 (9) ◽  
pp. 362 ◽  
Author(s):  
Kei Hiruma

Under natural conditions, plants generate a vast array of secondary metabolites. Several of these accumulate at widely varying levels in the same plant species and are reportedly critical for plant adaptation to abiotic and/or biotic stresses. Some secondary metabolite pathways are required for beneficial interactions with bacterial and fungal microbes and are also regulated by host nutrient availability so that beneficial interactions are enforced. These observations suggest an interplay between host nutrient pathways and the regulation of secondary metabolites that establish beneficial interactions with microbes. In this review, I introduce the roles of tryptophan-derived and phenylpropanoid secondary-metabolite pathways during plant interactions with pathogenic and beneficial microbes and describe how these pathways are regulated by nutrient availability.


2011 ◽  
Vol 7 ◽  
pp. 1620-1621 ◽  
Author(s):  
Jeroen S Dickschat

2019 ◽  
Author(s):  
Wei Wen-ping ◽  
Jia Wan Zhong ◽  
Yang Min

The type II toxin antitoxin (TA) system is the most well-studied TA system and is widely distributed in bacteria, especially pathogens such as Mycobacterium tuberculosis. Type II TA system plays an important role in many cellular processes, including maintaining the stability of mobile genetic elements, and bacterial altruistic suicide in response to nutritional starvation, environmental stress and phage infection. Interactions between toxin proteins and antitoxin proteins are critical for the regulation and function of type II TA systems; indeed, the understanding of their function is mainly derived from interaction and regulation of paired TA system proteins. Nonetheless, investigating interaction between unpaired TA system proteins, and the interaction between TA system proteins and other functional proteins, are becoming more common and have provided new insight into the complexity of its regulatory mechanism. In this review, we outlined the cross-interaction between TA system proteins, and the interaction between TA system proteins and other functional proteins, and we are trying to explain novel mechanism of TA system in the regulation of cellular activities. On this basis, we further discussed the knowledge and physiological implications of the relevant aspects of TA system research.


Author(s):  
Bill Freedman

Regimes of environmental stress are exceedingly complex. Particular stressors exist within continua of intensity of environmental factors. Those factors interact with each other, and their detrimental effects on organisms are manifest only at relatively high or low strengths of exposure—in fact, many of them are beneficial at intermediate levels of intensity. Although a diversity of environmental factors is manifest at any time and place, only one or a few of them tend to be dominant as stressors. It is useful to distinguish between stressors that occur as severe events (disturbances) and those that are chronic in their exposure, and to aggregate the kinds of stressors into categories (while noting some degree of overlap among them). Climatic stressors are associated with extremes of temperature, solar radiation, wind, moisture, and combinations of these factors. They act as stressors if their condition is either insufficient or excessive, in comparison with the needs and comfort zones of organisms or ecosystem processes. Chemical stressors involve environments in which the availability of certain substances is too low to satisfy biological needs, or high enough to cause toxicity or another physiological detriment to organisms or to higher-level attributes of ecosystems. Wildfire is a disturbance that involves the combustion of much of the biomass of an ecosystem, affecting organisms by heat, physical damage, and toxic substances. Physical stress is a disturbance in which an exposure to kinetic energy is intense enough to damage organisms and ecosystems (such as a volcanic blast, seismic sea wave, ice scouring, or anthropogenic explosion or trampling). Biological stressors are associated with interactions occurring among organisms. They may be directly caused by such trophic interactions as herbivory, predation, and parasitism. They may also indirectly affect the intensity of physical or chemical stressors, as when competition affects the availability of nutrients, moisture, or space. Extreme environments are characterized by severe regimes of stressors, which result in relatively impoverished ecosystem development. This may be a consequence of either natural or anthropogenic stressors. If a regime of environmental stress intensifies, the resulting responses include a degradation of the structure and function of affected ecosystems and of ecological integrity more generally. In contrast, a relaxation of environmental stress allows some degree of ecosystem recovery.


2019 ◽  
Vol 7 (5) ◽  
pp. 124 ◽  
Author(s):  
Chandra Risdian ◽  
Tjandrawati Mozef ◽  
Joachim Wink

Polyketides are a large group of secondary metabolites that have notable variety in their structure and function. Polyketides exhibit a wide range of bioactivities such as antibacterial, antifungal, anticancer, antiviral, immune-suppressing, anti-cholesterol, and anti-inflammatory activity. Naturally, they are found in bacteria, fungi, plants, protists, insects, mollusks, and sponges. Streptomyces is a genus of Gram-positive bacteria that has a filamentous form like fungi. This genus is best known as one of the polyketides producers. Some examples of polyketides produced by Streptomyces are rapamycin, oleandomycin, actinorhodin, daunorubicin, and caprazamycin. Biosynthesis of polyketides involves a group of enzyme activities called polyketide synthases (PKSs). There are three types of PKSs (type I, type II, and type III) in Streptomyces responsible for producing polyketides. This paper focuses on the biosynthesis of polyketides in Streptomyces with three structurally-different types of PKSs.


Author(s):  
Aikaterina L. Stefi ◽  
Dido Vassilacopoulou ◽  
Efthymia Routsi ◽  
Panagiotis Stathopoulos ◽  
Aikaterini Argyropoulou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document