Optimization of UPS Output Waveform Based on Single-Phase Bridge Inverter

Author(s):  
Guoli Xuan ◽  
Wenrui Li ◽  
Dawei Li ◽  
Jing Xu ◽  
Xiangluan Dong ◽  
...  
Keyword(s):  
Author(s):  
A. Shamsul Rahimi A. Subki ◽  
Mohd Zaidi Mohd Tumari ◽  
Wan Norhisyam Abd Rashid ◽  
Aiman Zakwan Jidin ◽  
Ahmad Nizammuddin Muhammad Mustafa

<span lang="EN-US">In this paper a hardware implementation of single-phase cascaded H-bridge three level multilevel inverter (MLI) using sinusoidal pulse width modulation (SPWM) is presented. There are a few interesting features of using this configuration, where less component count, less switching losses, and improved output voltage/current waveform. The output of power inverter consists of three form, that is, square wave, modified square wave and pure sine wave. The pure sine wave and modified square wave are more expensive than square wave. The focus paper is to generate a PWM signal which control the switching of MOSFET power semiconductor. The sine wave can be created by using the concept of Schmitt-Trigger oscillator and low-pass filter topology followed by half of the waveform will be eliminated by using the circuit of precision half-wave rectifier. Waveform was inverted with 180º by circuit of inverting op-amp amplifier in order to compare saw-tooth waveform. Two of PWM signal were produced by circuit of PWM and used digital inverter to invert the two PWM signal before this PWM signal will be passed to 2 MOSFET driver and a 3-level output waveform with 45 Hz was produced. As a conclusion, a 3-level output waveform is produced with output voltage and current recorded at 22.5 Vrms and 4.5 Arms. The value of measured resistance is 0.015 Ω that cause voltage drop around 0.043 V. Based on the result obtained, the power for designed inverter is around 100W and efficiency recorded at 75%.</span>


Author(s):  
Wojciech Pietrowski ◽  
Wojciech Ludowicz ◽  
Rafal Marek Wojciechowski

Purpose The specific modulation methods are used to control different kind of single-phase, as well as three-phase, inverters to ensure flexibility and high quality of the output waveform. This paper aims to present a combination of two classical methods, namely, pulse width modulation method and direct digital synthesis modulation method. Design/methodology/approach The total harmonic distortion of output waveforms of single-phase inverter based on elaborated modulation method has been determined by means of fast Fourier transform analysis. Tests have been carried out by using standard low-frequency application and also a wireless resonant energy link system. Findings Applying appropriate timer parameters of microcontroller enables to obtain a waveform for given output parameters (amplitude, frequency, frequency modulation index, etc.). The only limitation is the computing power of a microcontroller. Originality/value The elaborated method can be successfully used in both low- and high-frequency application ensuring high level of output waveform quality. Additional signal generators and the control of amplitude modulation ratio are no longer indispensable, what simplify immensely a control system.


2018 ◽  
Author(s):  
Asnil ◽  
krismadinata ◽  
Irma Husnaini ◽  
Syahril

This paper recounts an approach to optrmize the switching angles or single-phase live-level cascaded H-bridgc multilevel inverter. Optimized Harmonic Elimination Stepped Waveform (OHESW) technique was engaged to enhance the output waveform quality. Newtcn-Raphson method is employed to determine the switching angles for the inverter which eliminates specified higher order harmonics while maintaining the required fundamental voltage. Computation resulting from the optimized switching angle was simulated Its results indicated the proposed method's effectiveness


2013 ◽  
Vol 380-384 ◽  
pp. 3166-3169
Author(s):  
Peng Xue ◽  
Wei Wei ◽  
Bin Zhang

An inverter arranged in the photovoltaic generating system is required to be with higher working efficiency and lower degree of distortion on waveform. In this thesis, mathematic model of inverter has been given out through an analysis using the structure of two-level inverter, and then put forward a traditional PID control in combination with rerunning control for output waveform from an inverter. It has been proven through simulation effects that a better control precision for output waveform can be given out by this method.


Author(s):  
S. Mahajan ◽  
M. R. Pinnel ◽  
J. E. Bennett

The microstructural changes in an Fe-Co-V alloy (composition by wt.%: 2.97 V, 48.70 Co, 47.34 Fe and balance impurities, such as C, P and Ni) resulting from different heat treatments have been evaluated by optical metallography and transmission electron microscopy. Results indicate that, on air cooling or quenching into iced-brine from the high temperature single phase ϒ (fcc) field, vanadium can be retained in a supersaturated solid solution (α2) which has bcc structure. For the range of cooling rates employed, a portion of the material appears to undergo the γ-α2 transformation massively and the remainder martensitically. Figure 1 shows dislocation topology in a region that may have transformed martensitically. Dislocations are homogeneously distributed throughout the matrix, and there is no evidence for cell formation. The majority of the dislocations project along the projections of <111> vectors onto the (111) plane, implying that they are predominantly of screw character.


Author(s):  
Edgar S. Etz ◽  
Thomas D. Schroeder ◽  
Winnie Wong-Ng

We are investigating by Raman microprobe measurements the superconducting and related phases in the LnBa2Cu3O7-x (for x=0 to 1) system where yttrium has been replaced by several of the lanthanide (Ln = Nd,Sm,Eu,Ho,Er) elements. The aim is to relate the observed optical spectra (Raman and fluorescence) to the compositional and structural properties of these solids as part of comprehensive materials characterization. The results are correlated with the methods of synthesis, the processing techniques of these materials, and their superconducting properties. Of relevance is the substitutional chemistry of these isostructural systems, the differences in the spectra, and their microanalytical usefulness for the detection of impurity phases, and the assessment of compositional homogeneity. The Raman spectra of most of these compounds are well understood from accounts in the literature.The materials examined here are mostly ceramic powders prepared by conventional solid state reaction techniques. The bulk samples are of nominally single-phase composition as determined by x-ray diffraction.


Author(s):  
L. A. Giannuzzi ◽  
A. S. Ramani ◽  
P. R. Howell ◽  
H. W. Pickering ◽  
W. R. Bitler

The δ phase is a Zn-rich intermetallic, having a composition range of ∼ 86.5 - 92.0 atomic percent Zn, and is stable up to 665°C. The stoichiometry of the δ phase has been reported as FeZn7 and FeZn10 The deviation in stoichiometry can be attributed to variations in alloy composition used by each investigator. The structure of the δ phase, as determined by powder x-ray diffraction, is hexagonal (P63mc or P63/mmc) with cell dimensions a = 1.28 nm, c = 5.76 nm, and 555±8 atoms per unit cell. Later work suggested that the layer produced by hot-dip galvanizing should be considered as two distinct phases which are characterized by their morphological differences, namely: the iron-rich region with a compact appearance (δk) and the zinc-rich region with a columnar or palisade microstructure (δp). The sub-division of the δ phase was also based on differences in diffusion behavior, and a concentration discontinuity across the δp/δk boundary. However, work utilizing Weisenberg photographs on δ single crystals reported that the variation in lattice parameters with composition was small and hence, structurally, the δk phase and the δp phase were the same and should be thought of as a single phase, δ. Bastin et al. determined the average cell dimensions to be a = 1.28 nm and c = 5.71 nm, and suggested that perhaps some kind of ordering process, which would not be observed by x-ray diffraction, may be responsible for the morphological differences within the δ phase.


Author(s):  
G. Mackiewicz Ludtka

Historically, metals exhibit superplasticity only while forming in a two-phase field because a two-phase microstructure helps ensure a fine, stable grain size. In the U-5.8 Nb alloy, superplastici ty exists for up to 2 h in the single phase field (γ1) at 670°C. This is above the equilibrium monotectoid temperature of 647°C. Utilizing dilatometry, the superplastic (SP) U-5.8 Nb alloy requires superheating to 658°C to initiate the α+γ2 → γ1 transformation at a heating rate of 1.5°C/s. Hence, the U-5.8 Nb alloy exhibits an anomolous superplastic behavior.


Author(s):  
J. Fang ◽  
H. M. Chan ◽  
M. P. Harmer

It was Niihara et al. who first discovered that the fracture strength of Al2O3 can be increased by incorporating as little as 5 vol.% of nano-size SiC particles (>1000 MPa), and that the strength would be improved further by a simple annealing procedure (>1500 MPa). This discovery has stimulated intense interest on Al2O3/SiC nanocomposites. Recent indentation studies by Fang et al. have shown that residual stress relief was more difficult in the nanocomposite than in pure Al2O3. In the present work, TEM was employed to investigate the microscopic mechanism(s) for the difference in the residual stress recovery in these two materials.Bulk samples of hot-pressed single phase Al2O3, and Al2O3 containing 5 vol.% 0.15 μm SiC particles were simultaneously polished with 15 μm diamond compound. Each sample was cut into two pieces, one of which was subsequently annealed at 1300° for 2 hours in flowing argon. Disks of 3 mm in diameter were cut from bulk samples.


Sign in / Sign up

Export Citation Format

Share Document