Single-Crystalline SrTiO3 as Memristive Model System: From Materials Science to Neurological and Psychological Functions

2021 ◽  
pp. 333-354
Author(s):  
Xue-Bing Yin ◽  
Zheng-Hua Tan ◽  
Rui Yang ◽  
Xin Guo
2019 ◽  
Author(s):  
Austin Evans ◽  
Ioannina Castano ◽  
Alexandra Brumberg ◽  
Lucas R. Parent ◽  
Amanda Corcos ◽  
...  

The synthesis of periodic two-dimensional (2D) polymers and characterization of their optoelectronic behaviors are challenges at the forefront of polymer chemistry and materials science. Recently, we showed that layered 2D polymers known as 2D covalent organic frameworks (COFs) can be synthesized as single crystals by preparing COF particles as colloidal suspensions. Here we expand this approach from the condensation of boronic acids and catechols to the dehydrative trimerization of polyboronic acids. The resulting boroxine-linked colloids are the next class of 2D COFs to be obtained as single‑crystalline particles, as demonstrated here for four 2D COFs and one 3D COF. Colloidal stabilization enables detailed structural analysis by synchrotron X-ray diffraction and high-resolution transmission electron microscopy. Solution fluorescence spectroscopy revealed that the COF crystallites are highly emissive compared to their respective monomer solutions. Excitation‑emission matrix fluorescence spectroscopy indicated that the origin of this enhanced emission can be attributed to through-space communication of chromophores between COF sheets. These observations will motivate the development of colloidal COF systems as a platform to organize functional aromatic systems into precise and predictable assemblies with emergent properties.


2019 ◽  
Author(s):  
Austin Evans ◽  
Ioannina Castano ◽  
Alexandra Brumberg ◽  
Lucas R. Parent ◽  
Amanda Corcos ◽  
...  

The synthesis of periodic two-dimensional (2D) polymers and characterization of their optoelectronic behaviors are challenges at the forefront of polymer chemistry and materials science. Recently, we showed that layered 2D polymers known as 2D covalent organic frameworks (COFs) can be synthesized as single crystals by preparing COF particles as colloidal suspensions. Here we expand this approach from the condensation of boronic acids and catechols to the dehydrative trimerization of polyboronic acids. The resulting boroxine-linked colloids are the next class of 2D COFs to be obtained as single‑crystalline particles, as demonstrated here for four 2D COFs and one 3D COF. Colloidal stabilization enables detailed structural analysis by synchrotron X-ray diffraction and high-resolution transmission electron microscopy. Solution fluorescence spectroscopy revealed that the COF crystallites are highly emissive compared to their respective monomer solutions. Excitation‑emission matrix fluorescence spectroscopy indicated that the origin of this enhanced emission can be attributed to through-space communication of chromophores between COF sheets. These observations will motivate the development of colloidal COF systems as a platform to organize functional aromatic systems into precise and predictable assemblies with emergent properties.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shohei Kumagai ◽  
Akifumi Yamamura ◽  
Tatsuyuki Makita ◽  
Junto Tsurumi ◽  
Ying Ying Lim ◽  
...  

Abstract Building on significant developments in materials science and printing technologies, organic semiconductors (OSCs) promise an ideal platform for the production of printed electronic circuits. However, whether their unique solution-processing capability can facilitate the reliable mass manufacture of integrated circuits with reasonable areal coverage, and to what extent mass production of solution-processed electronic devices would allow substantial reductions in manufacturing costs, remain controversial. In the present study, we successfully manufactured a 4-inch (c.a. 100 mm) organic single-crystalline wafer via a simple, one-shot printing technique, on which 1,600 organic transistors were integrated and characterized. Owing to their single-crystalline nature, we were able to verify remarkably high reliability and reproducibility, with mobilities up to 10 cm2 V−1 s−1, a near-zero turn-on voltage, and excellent on-off ratio of approximately 107. This work provides a critical milestone in printed electronics, enabling industry-level manufacturing of OSC devices concomitantly with lowered manufacturing costs.


1998 ◽  
Vol 4 (S2) ◽  
pp. 768-769
Author(s):  
U. Alber ◽  
R. Schweinfest ◽  
M. Riihle

Metal/ceramic interfaces play a crucial role in materials science and for various industrial purposes. In technical applications these interfaces are often exposed to high temperatures and different atmospheres. This often results in a change of the mechanical stability via the morphology and electronic structure of the interfaces. We present a comprehensive analytical electron microcopy (AEM) and fracture mechanics study of this connection on a metal/ceramic-interface model system: Cu/ α-Al2O3.The specimens were produced by UHV diffusion bonding of bulk Cu to (α-Al2O3 single crystals. Two different Cu materials were used, either pure Cu (noted: Cu) or Cu containing 83±12 ppm oxygen (noted: Cu(O)). After bonding the interfaces were annealed in an oxygen partial pressure at 1000°C between 20 and 120 h. Four point bending tests showed an increase of the fracture energy for the Cu(O)/α -Al2O3-interfaces compared to the Cu(O)/α-Al2O3-interfaces by a factor of 5±2.


Author(s):  
J. Murray Gibson ◽  
F.M. Ross ◽  
R.D. Twesten

Oxidation is an important process in materials science. Silicon oxidation is particularly relevant for electronic device fabrication, but it also provides a model system. We report here the use of in-situ TEM for the examination of the microstructural details of the oxidation process.


Author(s):  
J. Herbert Waite ◽  
Matthew James Harrington

Over the last 15 years, the byssus of marine mussels (Mytilus spp.) has emerged as an important model system for the bio-inspired development and synthesis of advanced polymers and adhesives. But how did these seemingly inconsequential fibers that are routinely discarded in mussel hors d’oeuvres become the focus of intense international research. In the present review, we take a historical perspective to understand this phenomenon. Our purpose is not to review the sizeable literature of mussel-inspired materials as there are numerous excellent reviews that cover this topic in great depth. Instead, we explore how the byssus became a magnet for bio-inspired materials science, with a focus on the specific breakthroughs in the understanding of composition, structure, function and formation of the byssus achieved through fundamental scientific investigation. Extracted principles have led to bio-inspired design of novel materials with both biomedical and technical applications, including surgical adhesives, self-healing polymers, tunable hydrogels and even actuated composites. Continued study into the byssus of Mytilid mussels and other species will provide a rich source of inspiration for years to come.


Sign in / Sign up

Export Citation Format

Share Document