Prediction of Soil Salinization and Sodification Processes as Affected by Groundwater Under Different Climate and Management Conditions

Author(s):  
Ildefonso Pla-Sentís
Keyword(s):  
2019 ◽  
Vol 11 (9) ◽  
pp. 2578
Author(s):  
Jumeniyaz Seydehmet ◽  
Guang-Hui Lv ◽  
Abdugheni Abliz

Irrational use and management of water and land are associated with poor hydro-geological conditions causing water logging and salinization problems, possibly leading to farmland abandonment and economic loss. This poses a great challenge to the sustainability of oasis’ and requires desalinization through reasonable landscape design by multiple crossing studies so we collected traditional knowledge by field interviews and literature schemes, except for the modern desalinization approaches by literature, and we found that the salinization problem has been solved by traditional land reclamation, traditional drainage, natural drainage and flood irrigation, locally. It is worth mentioning that the traditional reclamation in salinized areas requires flood water, sand dunes and a salinized pit area; the sand dunes are used to elevate the pit surface, and water is used to leach salt from the soil. Natural drainage (the depth and width are 4–10 m and 50–100 m, respectively) caused by flash flooding has significant benefits to some salinized villages in the range of 3000–5000 m and ancient groundwater drainage systems, such as Karez are supporting the oasis with drainage water for centuries. In addition landscape characteristics, salinization and hydro-geological conditions of the oasis were studied from Landsat image, DEM, literature and field photos. Then based on the gathered information above, a desalinization model was developed to decrease the groundwater table and salt leaching in the water logging landscape. Then according to landscape characteristics, different desalinization approaches were recommended for different landscapes. To address environmental uncertainties, an adaptive landscape management and refinement approach was developed, and acceptance of the model was validated by stakeholder opinion. The results provide guidelines for sustainable desalinization design and highlight the importance of combining traditional knowledge and modern ecological principles in sustainable landscape design.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaoyue Yu ◽  
Yu Pan ◽  
Yan Dong ◽  
Bin Lu ◽  
Chao Zhang ◽  
...  

Abstract Background As important forest tree species, biological stress and soil salinization are important factors that restrict the growth of Populus × euramericana. WRKYs are important transcription factors in plants that can regulate plant responses to biotic and abiotic stresses. In this study, PeWRKY31 was isolated from Populus × euramericana, and its bioinformation, salt resistance and insect resistance were analyzed. This study aims to provide guidance for producing salt-resistant and insect-resistant poplars. Results PeWRKY31 has a predicted open reading frame (ORF) of 1842 bp that encodes 613 amino acids. The predicted protein is the unstable, acidic, and hydrophilic protein with a molecular weight of 66.34 kDa, and it has numerous potential phosphorylation sites, chiefly on serines and threonines. PeWRKY31 is a zinc-finger C2H2 type-II WRKY TF that is closely related to WRKY TFs of Populus tomentosa, and localizes to the nucleus. A PeWRKY31 overexpression vector was constructed and transformed into Nicotiana tabacum L. Overexpression of PeWRKY31 improved the salt tolerance and insect resistance of the transgenic tobacco. Transcriptome sequencing and KEGG enrichment analysis showed the elevated expression of genes related to glutathione metabolism, plant hormone signal transduction, and MAPK signaling pathways, the functions of which were important in plant salt tolerance and insect resistance in the overexpressing tobacco line. Conclusions PeWRKY31 was isolated from Populus × euramericana. Overexpression of PeWRKY31 improved the resistance of transgenic plant to salt stress and pest stress. The study provides references for the generation of stress-resistant lines with potentially great economic benefit.


2021 ◽  
pp. 1-11
Author(s):  
Monther T. Sadder ◽  
Ahmad F. Ateyyeh ◽  
Hodayfah Alswalmah ◽  
Adel M. Zakri ◽  
Abdullah A. Alsadon ◽  
...  

Abstract Low-quality water and soil salinization are increasingly becoming limiting factors for food production, including olive – a major fruit crop in several parts of the world. Identifying putative salinity-stress tolerance in olive would be helpful in the future development of new tolerant varieties. In this study, novel salinity-responsive biomarkers (SRBs) were characterized in the species, namely, monooxygenase 1 (OeMO1), cation calcium exchanger 1 (OeCCX1), salt tolerance protein (OeSTO), proteolipid membrane potential modulator (OePMP3), universal stress protein (OeUSP2), adaptor protein complex 4 medium mu4 subunit (OeAP-4), WRKY1 transcription factor (OeWRKY1) and potassium transporter 2 (OeKT2). Unique structural features were highlighted for encoded proteins as compared with other plant homologues. The expression of olive SRBs was investigated in leaves of young plantlets of two cultivars, ‘Nabali’ (moderately tolerant) and ‘Picual’ (tolerant). At 60 mM NaCl stress level, OeMO1, OeSTO, OePMP3, OeUSP2, OeAP-4 and OeWRKY1 were up-regulated in ‘Nabali’ as compared with ‘Picual’. On the other hand, OeCCX1 and OeKT2 were up-regulated at three stress levels (30, 60 and 90 mM NaCl) in ‘Picual’ as compared to ‘Nabali’. Salinity tolerance in olive presumably engages multiple sets of responsive genes triggered by different stress levels.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3390
Author(s):  
Hui Zhang ◽  
Lin Song ◽  
Xiaolin Chen ◽  
Pengcheng Li

Excessive use of nitrogen fertilizer in intensively managed agriculture has resulted in abundant accumulation of nitrate in soil, which limits agriculture sustainability. How to reduce nitrate content is the key to alleviate secondary soil salinization. However, the microorganisms used in soil remediation cause some problems such as weak efficiency and short survival time. In this study, seaweed polysaccharides were used as stimulant to promote the rapid growth and safer nitrate removal of denitrifying bacteria. Firstly, the growth rate and NO3−-N removal capacity of three kinds of denitrifying bacteria, Bacillus subtilis (BS), Pseudomonas stutzeri (PS) and Pseudomonas putida (PP), were compared. The results showed that Bacillus subtilis (BS) had a faster growth rate and stronger nitrate removal ability. We then studied the effects of Enteromorpha linza polysaccharides (EP), carrageenan (CA), and sodium alginate (AL) on growth and denitrification performance of Bacillus subtilis (BS). The results showed that seaweed polysaccharides obviously promoted the growth of Bacillus subtilis (BS), and accelerated the reduction of NO3−-N. More importantly, the increased NH4+-N content could avoid excessive loss of nitrogen, and less NO2−-N accumulation could avoid toxic effects on plants. This new strategy of using denitrifying bacteria for safely remediating secondary soil salinization has a great significance.


2021 ◽  
Vol 14 (4) ◽  
Author(s):  
Zarai Besma ◽  
Walter Christian ◽  
Michot Didier ◽  
Montoroi Jean Pierre ◽  
Hachicha Mohamed

Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 211
Author(s):  
Tharani Gopalakrishnan ◽  
Lalit Kumar

Soil salinity is a serious threat to coastal agriculture and has resulted in a significant reduction in agricultural output in many regions. Jaffna Peninsula, a semi-arid region located in the northern-most part of Sri Lanka, is also a victim of the adverse effects of coastal salinity. This study investigated long-term soil salinity changes and their link with agricultural land use changes, especially paddy land. Two Landsat images from 1988 and 2019 were used to map soil salinity distribution and changes. Another set of images was analyzed at four temporal periods to map abandoned paddy lands. A comparison of changes in soil salinity with abandoned paddy lands showed that abandoned paddy lands had significantly higher salinity than active paddy lands, confirming that increasing salts owing to the high levels of sea water intrusion in the soils, as well as higher water salinity in wells used for irrigation, could be the major drivers of degradation of paddy lands. The results also showed that there was a dramatic increase in soil salinity (1.4-fold) in the coastal lowlands of Jaffna Peninsula. 64.6% of the salinity-affected land was identified as being in the extreme saline category. In addition to reducing net arable lands, soil salinization has serious implications for food security and the livelihoods of farmers, potentially impacting the regional and national economy.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 380
Author(s):  
Abdoul Kader Mounkaila Hamani ◽  
Jinsai Chen ◽  
Mukesh Kumar Soothar ◽  
Guangshuai Wang ◽  
Xiaojun Shen ◽  
...  

Soil salinization adversely affects agricultural productivity. Mitigating the adverse effects of salinity represents a current major challenge for agricultural researchers worldwide. The effects of exogenously applied glycine betaine (GB) and salicylic acid (SA) on mitigating sodium toxicity and improving the growth of cotton seedlings subjected to salt stress remain unclear. The treatments in a phytotron included a control (CK, exogenously untreated, non-saline), two NaCl conditions (0 and 150 mM), four exogenous GB concentrations (0, 2.5, 5.0, and 7.5 mM), and four exogenous SA concentrations (0, 1.0, 1.5, and 2.0 mM). The shoot and roots exposed to 150 mM NaCl without supplementation had significantly higher Na+ and reduced K+, Ca2+, and Mg2+ contents, along with lowered biomass, compared with those of CK. Under NaCl stress, exogenous GB and SA at all concentrations substantially inversed these trends by improving ion uptake regulation and biomass accumulation compared with NaCl stress alone. Supplementation with 5.0 mM GB and with 1.0 mM SA under NaCl stress were the most effective conditions for mitigating Na+ toxicity and enhancing biomass accumulation. NaCl stress had a negative effect on plant growth parameters, including plant height, leaf area, leaf water potential, and total nitrogen (N) in the shoot and roots, which were improved by supplementation with 5.0 mM GB or 1.0 mM SA. Supplementation with 5.0 mM exogenous GB was more effective in controlling the percentage loss of conductivity (PLC) under NaCl stress.


Sign in / Sign up

Export Citation Format

Share Document