Effect of Liquid-to-Alumino-Silicate Material Ratio and Rice Husk Ash Content on the Properties of Geopolymer Concrete

2021 ◽  
pp. 85-97
Author(s):  
Tang Van Lam ◽  
Pham Van Ngan ◽  
Nguyen Dac Binh Minh
2015 ◽  
Vol 804 ◽  
pp. 129-132
Author(s):  
Sumrerng Rukzon ◽  
Prinya Chindaprasirt

This research studies the potential for using waste ash from industrial and agricultural by-products as a pozzolanic material. Classified fly ash (FA) and ground rice husk ash (RA) were the materials used. Water requirement, compressive strength and porosity of cement mortar were investigated. Test results indicated that FA and RA (waste ash) have a high potential to be used as a good pozzolanic material. The water requirement of mortar mix decreases with the increases in fly ash content. For ground rice husk ash (RA), the water requirement of mortar mix increases with the increases in rice husk ash content. In addition, the reduction in porosity was associated with the increase in compressive strength.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yun Yong Kim ◽  
Byung-Jae Lee ◽  
Velu Saraswathy ◽  
Seung-Jun Kwon

This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm2and 45 N/mm2, respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete.


Author(s):  
Aikot Pallikkara Shashikala ◽  
Praveen Nagarajan ◽  
Saranya Parathi

Production of Portland cement causes global warming due to the emission of greenhouse gases to the environment. The need for reducing the amount of cement is necessary from sustainability point of view. Alkali activated and geopolymeric binders are used as alternative to cement. Industrial by-products such as fly ash, ground granulated blast furnace slag (GGBS), silica fume, rice husk ash etc. are commonly used for the production of geopolymer concrete. This paper focuses on the development of geopolymer concrete from slag (100% GGBS). Effect of different cementitious materials such as lime, fly ash, metakaolin, rice husk ash, silica fume and dolomite on strength properties of slag (GGBS) based geopolymer concrete are also discussed. It is observed that the addition of dolomite (by-products from rock crushing plants) into slag based geopolymer concrete reduces the setting time, enhances durability and improves rapidly the early age strength of geopolymer concrete. Development of geopolymer concrete with industrial by-products is a solution to the disposal of the industrial wastes. The quick setting concrete thus produced can reduce the cost of construction making it sustainable also.


2018 ◽  
Vol 195 ◽  
pp. 01024
Author(s):  
Muhammad Rizqi ◽  
Hernu Suyoso ◽  
Gati Annisa Hayu

The use of concrete as the main material in the construction does not mean it has no weaknesses. The brittle, low-density concrete properties make it collapse unexpectedly. In this work, a concrete innovation was performed to increase the compressive strength by the addition of rice husk ash as cement substitution that contains 92.31% of SiO2 and by the addition of banana tree bark. The proportion of rice husk ash used was obtained from preliminary tests to determine the proportion of rice husk ash by 5%, 7%, 10%, 12% and 15% of the cement’s weight. The result of the proportion which yielded the optimum concrete compressive strength by 24.4 MPa in the proportion of rice husk ash by 7%, then was made with the same ash content with banana tree bark fiber variation 0%; 1.5%; 2% and 3%. The Result of the test concluded that the addition of banana tree bark fiber can decrease the compressive strength and tensile strength of concrete because it is caused by the fibers that make hard concrete become solid. However, for all proportions of fiber, it still qualifies as the minimum tensile strength to be achieved i.e. 8% of the compressive strength of the plan.


2018 ◽  
Vol 53 (15) ◽  
pp. 2047-2052 ◽  
Author(s):  
Mohamad Reza Nasresfahani ◽  
Morteza Shamanian

A metal–matrix composite was developed by eco-friendly accumulative roll bonding process and agricultural wastes. Amorphous silica particles were obtained by heating rice husk at 600℃ and then ball milling. Amorphous silica particles as a reinforcement were embedded in a matrix of aluminum 1100. Composites with various amounts (1%, 2%, 3%, 4%, 5%, 6%, and 7%, mass fraction) of rice husk ash particles were developed. The produced aluminum–rice husk ash composites were evaluated for structural changes and mechanical properties. The scanning electron micrographs showed a uniform distribution of rice husk ash particles and were bonded well with the aluminum matrix after 10 cycles. By increasing the rice husk ash content, the composite strength increases first and then becomes constant because of the inappropriate connection of aluminum sheets. Increasing the rice husk ash content of the composite causes the change from the ductile to a relatively brittle type of fracture.


Sign in / Sign up

Export Citation Format

Share Document