scholarly journals The effect of addition of banana tree bark for compressive strength and crack tensile strength of rice husk ash concrete

2018 ◽  
Vol 195 ◽  
pp. 01024
Author(s):  
Muhammad Rizqi ◽  
Hernu Suyoso ◽  
Gati Annisa Hayu

The use of concrete as the main material in the construction does not mean it has no weaknesses. The brittle, low-density concrete properties make it collapse unexpectedly. In this work, a concrete innovation was performed to increase the compressive strength by the addition of rice husk ash as cement substitution that contains 92.31% of SiO2 and by the addition of banana tree bark. The proportion of rice husk ash used was obtained from preliminary tests to determine the proportion of rice husk ash by 5%, 7%, 10%, 12% and 15% of the cement’s weight. The result of the proportion which yielded the optimum concrete compressive strength by 24.4 MPa in the proportion of rice husk ash by 7%, then was made with the same ash content with banana tree bark fiber variation 0%; 1.5%; 2% and 3%. The Result of the test concluded that the addition of banana tree bark fiber can decrease the compressive strength and tensile strength of concrete because it is caused by the fibers that make hard concrete become solid. However, for all proportions of fiber, it still qualifies as the minimum tensile strength to be achieved i.e. 8% of the compressive strength of the plan.

2019 ◽  
Vol 9 (3) ◽  
pp. 4209-4212 ◽  
Author(s):  
N. Bheel ◽  
A. W. Abro ◽  
I. A. Shar ◽  
A .A. Dayo ◽  
S. Shaikh ◽  
...  

In this research, rice husk ash (RHA) was used as a partial substitute for cement in concrete to reduce its cost, and alternative processing methods using agricultural/industrial waste were found. The main objective of this study was to determine the fresh (flowability) and hardened (splitting tensile strength and compressive strength) concrete properties using RHA at 0%, 5%, 10%, 15% and 20% by weight. A total of 90 concrete samples (45 cubes and 45 cylinders) were prepared and cured on 7, 14, and 28 days to the design of target strength 28N/mm2, and ultimately, these concrete specimens were tested on UTM. Three concrete specimens were cast for each proportion and ultimately the average of the three concrete samples was taken as the final result. The flowability of fresh concrete decreases with increasing content of RHA in concrete. The results showed that the compressive and tensile strength of the concrete specimens increased by 11.8% and 7.31%, respectively by using 10% RHA at 28 days curing.


2015 ◽  
Vol 804 ◽  
pp. 129-132
Author(s):  
Sumrerng Rukzon ◽  
Prinya Chindaprasirt

This research studies the potential for using waste ash from industrial and agricultural by-products as a pozzolanic material. Classified fly ash (FA) and ground rice husk ash (RA) were the materials used. Water requirement, compressive strength and porosity of cement mortar were investigated. Test results indicated that FA and RA (waste ash) have a high potential to be used as a good pozzolanic material. The water requirement of mortar mix decreases with the increases in fly ash content. For ground rice husk ash (RA), the water requirement of mortar mix increases with the increases in rice husk ash content. In addition, the reduction in porosity was associated with the increase in compressive strength.


2021 ◽  
Vol 8 ◽  
Author(s):  
Osama Zaid ◽  
Jawad Ahmad ◽  
Muhammad Shahid Siddique ◽  
Fahid Aslam

The production of rice is significant worldwide; the husk produced is generally used as a combustible material for the preparation of paddies, delivering energy through direct combustion as well as by gasifying. Annually, 7.4 million tons of Rice Husk Ash (RHA) is produced and poses an incredible danger to the environment, harming the land and the encompassing zone where it is unloaded. In the transformation of rice husk to ash, the ignition cycle eliminates the natural products, leaving silica-rich remains. These silica-rich remains have proven to have potential to be utilized in concrete as a limited substitution of cement to enhance the concrete compressive strength. Steel fibers’ incorporation increases the concrete tensile strength, balances out concrete samples, and changes their brittle behavior to a more ductile response. In the current study, the influence of various doses of Rice Husk Ash (RHA) used in concrete in the presence and absence of steel fibers and concrete performance has been examined. A total of nine mixes have been designed: one was a control, four were without steel fibers containing only RHA, and the last four mixed RHA with steel fibers from 0.5 to 2%. Tests with 5, 10, 15, and 20% percentages of RHA replacing the concrete have been targeted. Results have been compared with the reference samples and the reasonability of adding Rice Husk Ash to concrete has been studied. From the results, it was noted that about 10% of cement might be replaced with Rice Husk Ash mixed in with steel fibers with almost equal compressive strength. Replacing more than 15% of cement with RHA will produce concrete with a low performance in terms of strength and durability.


2021 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Agung Prayogi

Abstract Concrete is the most widely used material throughout the world and innovations continue to be carried out to produce efficient development. Shell charcoal ash and rice husk ash are industrial by-products which have the potential to replace sand for concrete mix, especially in Indragiri Hilir. The research with the title "Effect of Mixture of Rice Husk Ash and Shell Ash Ashes as Substitute for Some Fine Aggregates Against Concrete Compressive Strength" aims to prove the effect of a mixture of shell charcoal ash and husk ash to replace some of the sand to produce maximum compressive strength. Concrete is a mixture of Portland cement, fine aggregate, coarse aggregate, and water. This research uses 5 variations of the mixture to the weight of sand, BSA 0 without a substitute mixture, BSA 1 with a mixture of 5% husk ash and 10% shell charcoal, BSA 2 with a mixture of 5% husk ash and 15% charcoal ash, BSA 3 with a mixture of 5% husk ash and 18% charcoal, BSA 4 with a mixture of 10% husk and 10% charcoal, and BSA 5 with a mixture of 13% husk ash and 10% charcoal ash. SNI method is used for the Job Mix Formula (JMF) mixture in this research. The results of the average compressive strength of concrete at 28 days for JMF of 21.05 MPa, BSA 1 of 23.68 MPa, BSA 2 of 22.23 MPa, BSA 3 of 14.39 MPa, BSA 4 of 13.34 MPa , and BSA 5 of 20.14 MPa. The conclusion drawn from the results of the BSA 1 research with a mixture of 5% husk ash and 15% charcoal ash produced the highest average compressive strength of 23.68 MPa. Abstrak Beton merupakan material paling banyak digunakan diseluruh dunia dan terus dilakukan inovasi untuk menghasilkan pembangunan yang efisien. Abu arang tempurung dan abu sekam padi merupakan hasil sampingan industri yang berpotensi sebagai pengganti pasir untuk campuran beton, khususnya di Indragiri Hilir. Penelitian dengan judul “Pengaruh Campuran Abu Sekam Padi dan Abu Arang Tempurung Sebagai Pengganti Sebagian Agregat Halus Terhadap Kuat Tekan Beton” ini bertujuan membuktikan adanya pengaruh campuran abu arang tempurung dan abu sekam untuk mengganti sebagian pasir hingga menghasilkan kuat tekan maksimum. Beton adalah campuran antara semen portland, agregat halus, agregat kasar, dan air. Penelitian ini menggunakan 5 variasi campuran terhadap berat pasir, BSA 0 tanpa campuran pengganti, BSA 1 dengan campuran 5 % abu sekam dan 10% arang tempurung, BSA 2 dengan campuran 5% abu sekam dan 15% abu arang, BSA 3 dengan campuran 5% abu sekam dan 18% arang, BSA 4 dengan campuran 10% sekam dan 10% arang, dan BSA 5 dengan campuran 13% abu sekam dan 10% abu arang. Metode SNI digunakan untuk campuran Job Mix Formula (JMF)  pada penelitian ini. Hasil rata-rata kuat tekan beton pada umur 28 hari untuk JMF sebesar 21,05 MPa, BSA 1 sebesar 23,68 MPa, BSA 2 sebesar 22,23 MPa, BSA 3 sebesar 14,39 MPa, BSA 4 sebesar 13,34 MPa, dan BSA 5 Sebesar 20,14 MPa. Ditarik kesimpulan dari hasil penelitian BSA 1 dengan campuran 5% abu sekam dan 15% abu arang menghasilkan rata-rata kuat tekan tertinggi yaitu sebesar 23,68 MPa.  


2020 ◽  
Vol 10 (2) ◽  
pp. 5402-5405 ◽  
Author(s):  
N. Bheel ◽  
M. A. Jokhio ◽  
J. A. Abbasi ◽  
H. B. Lashari ◽  
M. I. Qureshi ◽  
...  

Cement production involves high amounts of energy consumption and carbon dioxide emissions. Pakistan is facing a serious energy crisis and cement’s cost is increasing. In addition, landfilling of potential concrete components can lead to environmental degradation. The use of waste as cement replacement not only reduces cement production cost by reducing energy consumption, but it is also environmentally friendly. The purpose of this study is to analyze the characteristics of concrete by partially replacing cement with Rice Husk Ash (RHA) and Fly Ash (FA). This study is mainly focused on the performance of concrete conducting a slump test, and investigating indirect tensile and compressive strength. Cement was replaced with RHA and FA by 5% (2.5% RHA + 2.5% FA), 10% (5% RHA + 5% FA), 15% (7.5% RHA + 7.5% FA) and 20% (10% RHA+10% FA) by weight. Ninety concrete samples were cast with mix proportions of 1:2:4 and 0.55 water/cement ratio. Cube and cylindrical samples were used for measuring compressive and split tensile strength respectively, after 7 and 28 days. The results showed that after 28 days, the 5% RHA+5% FA sample’s compressive strength was enhanced by 16.14% and its indirect tensile strength was improved by 15.20% compared to the conventional sample. Moreover, the sample’s slump value dropped as the content of RHA and FA increased.


Abstract: In the present research work, liquid state technique is employed to prepare the LM4/RHA/TiO2 composites containing four different mass proportion of RHA and TiO2. The weight proportion of reinforcements ie RHA-1,3&5 and TiO2 2,5&6 respectively. Hybrid composite with 3% of RHA and 6% of TiO2 showed the maximum Tensile strength of 298.37 N/mm².It is found that there is 37 % increase of tensile strength while addition of RHA and TiO2 to LM 24.The aluminium based particulate reinforced composite, the dislocations are generated during solutionizing due to thermal mismatch between the matrix and the ceramic reinforcement particles. It can be inferred that the tensile strength increased with an increase in the weight percentage of rice husk ash and TiO2. Because, the RHA particles act as barriers to the dislocations when taking up the load applied. It has been observed that with changing rate of TiO2 compressive quality increments from 478.83 to 653.79 MPa. The increase in compressive strength is mainly due to the decrease in the inter-particle spacing between the particulates since RHA and TiO2 are much harder than LM24. The presence of RHA and TiO2 resists deforming stresses and thus enhancing the compressive strength of the composite material. The maximum hardness value obtained for 5 wt.% of RHA and 6 wt.% of TiO2 .ie.117 BHN. It was observed that the hardness of the composite linearly increasing with the increase in weight fraction of the rice husk ash particles. This occurs due to increases in surface area of the matrix and thus the grain sizes are reduced. The presence of such hard surface area offers more resistance to plastic deformation which leads to increase hardness.. Keywords: LM4/RHA/TiO2, Tensile testing, Compression, Hardness, Rice husk.


2020 ◽  
Vol 4 (1) ◽  
pp. 29-36
Author(s):  
Hurul 'Ain ◽  
Alan Putranto ◽  
Betti Ses Eka Polonia ◽  
Ahmad Ravi

The effect of the addition of rice husk ash (rice husk ash) to the K-175 formula quality concrete mixture, as an aggregate mixture to the concrete compressive strength test using a Compression Testing Machine to get the compressive strength value of concrete and can be used as an alternative material as an additional material in making concrete in improving the quality of building construction. The study uses K-175 concrete quality characteristics as a test material. Test object in the shape of a cube with a size of 15cm x 15cm. With 4 variations in levels of addition of rice husk ash by 0%, 1.5%, 3.5%, and 5% by weight of cement. The husk ash used is the husk ash that escaped the 2.36 mm filter size. From each type of mixture made 9 test specimens, every 3 specimens for the age of concrete 7 days, 14 days and 28 days. Concrete mortar design using ASTM method. With material sources using fine aggregate from the Pawan Ketapang River and coarse aggregate from Merak, Banten. Stages of implementation include examining the nature of aggregate materials, sample making, and testing of concrete compressive strength.


2018 ◽  
Vol 13 (4) ◽  
pp. 447-474 ◽  
Author(s):  
Ali Ghorbani ◽  
Maysam Salimzadehshooiili ◽  
Jurgis Medzvieckas ◽  
Romualdas Kliukas

In this paper, stress-strain behaviour of sand-clay mixture stabilised with different cement and rice husk ash percentages, and reinforced with different polypropylene fibre lengths are evaluated. Mixtures are widely used in road construction for soil stabilisation. It is observed that replacing half of the cement percentage (in high cement contents) with rice husk ash will result in a higher unconfined compressive strength. In addition, the presence of 6 mm polypropylene fibres will help to increase the unconfined compressive strength of stabilised samples, while larger fibres cause reverse behaviour. In addition, introducing a new index for assessing the effect of curing days. Curing Improvement Index it is obtained that larger fibres show higher Curing Improvement Index values. Results gained for the effects of curing days, and fibre lengths are further discussed and interpreted using Scanning Electron Microscopy photos. Based on the conducted Unconfined Compressive Strength, Indirect Tensile Strength, and Flexural Strength tests and using evolutionary polynomial regression modelling, some simple relations for prediction of unconfined compressive strength, indirect tensile strength, and flexural strength of cement-rice husk ash stabilised, and fibre reinforced samples are presented. High coefficients of determination of developed equations with experimental data show the accuracy of proposed relationships. Moreover, using a sensitivity analysis based on Cosine Amplitude Method, cement percentage and the length of polypropylene fibres used to reinforce the stabilised samples are respectively reported as the most and the least effective parameters on the unconfined compressive strength of specimens.


2016 ◽  
Vol 9 (1) ◽  
pp. 29-33
Author(s):  
MB Hossain ◽  
KM Shaad ◽  
MS Rahman ◽  
P Bhowmik

This research was carried out to investigate various physical properties of Rice Husk Ash (RHA) and, some physical and mechanical properties of concrete incorporating RHA in different proportions. The concrete specimens were tested at 7, 21 and 28 days after curing. Test results revealed that the specific gravity of RHA was found lower than that of sand. The density of concrete containing RHA was recorded between 80-110 lb.ft-3, which is lower than conventional concrete. Water absorption was found increasing with the increase of RHA content in concrete specimens. There were significant variations in compressive strength values of concrete containing 5%, 10% and 20% volume of RHA. The compressive strength of 5% RHA specimen was 150-200% higher than that of other specimens. Hence, upto 5% replacement of RHA could be recommended for making normal lightweight concrete. The splitting tensile strength was about 9-10% of compressive strength. It was concluded that upto 5% RHA can be used effectively in making normal lightweight concrete. The higher percentage of RHA could be used in making non-structural concrete where the strength of concrete is not concerned.J. Environ. Sci. & Natural Resources, 9(1): 29-33 2016


2021 ◽  
Author(s):  
Khawaja Adeel Tariq ◽  
Muhammad Sohaib ◽  
Mirza Awais Baig

AbstractThis research work is related to the study of effects on properties of concrete having rice husk ash as cementitious supplementary materials. Total four mixes of concrete were done with varying percentages of rice husk as 6%, 12% and 18%. The tensile, flexural and compressive strengths that contain rice husk ash were determined by testing cubes, cylinders and beams. There was a replacement of 6%, 12% and 18% of rice husk ash in all mixes except the control mix. The concrete's flexural strength with rice husk ash increases at the beginning and at the later age (i.e., 28 days) similar to control mix; however, variation in compressive and splitting tensile strength is negligible. The optimum results are achieved with 6% replacement of cement with rice husk ash. Therefore, it was inferred that rice husk ash could be used as partial replacement of cement in concrete to produce economic concrete.


Sign in / Sign up

Export Citation Format

Share Document