Increasing the Efficiency of Cooling Water Resources Using at Power Plants

2021 ◽  
pp. 96-104
Author(s):  
Artem Vinogradov ◽  
Antonina Filimonova ◽  
Natalya Chichirova ◽  
Andrey Chichirov
2021 ◽  
Author(s):  
Bobby D. Middleton ◽  
Patrick V. Brady ◽  
Jeffrey A. Brown ◽  
Serafina T. Lawles

Abstract Water management has become critical for thermoelectric power generation in the US. Increasing demand for scarce water resources for domestic, agricultural, and industrial use affects water availability for power plants. In particular, the population in the Southwestern part of the US is growing and water resources are over-stressed. The engineering and management teams at the Palo Verde Generating Station (PV) in the Sonoran Desert have long understood this problem and began a partnership with Sandia National Laboratories in 2017 to develop a long-term water strategy for PV. As part of this program, Sandia and Palo Verde staff have developed a comprehensive software tool that models all aspects of the PV (plant cooling) water cycle. The software tool — the Palo Verde Water Cycle Model (PVWCM) — tracks water operations from influent to the plant through evaporation in one of the nine cooling towers or one of the eight evaporation ponds. The PVWCM has been developed using a process called System Dynamics. The PVWCM is developed to allow scenario comparison for various plant operating strategies.


2005 ◽  
Vol 93 (9-10) ◽  
Author(s):  
Dorothea Schumann ◽  
R. Grasser ◽  
R. Dressler ◽  
H. Bruchertseifer

SummaryA new device was developed for the identification of several iodine species in aqueous solution using ion chromatography. Iodide, iodate and molecular iodine can be determined. (The equipment allows both conductivity and radioactivity detections.) The method is applicable for the determination of radioactive iodine contaminations in the cooling water of nuclear power plants.


2011 ◽  
Vol 18 (3) ◽  
pp. 48-54 ◽  
Author(s):  
Andrzej Błaszczyk ◽  
Jerzy Głuch ◽  
Andrzej Gardzilewicz

Operating and economic conditions of cooling water control for marine steam turbine condensers The article presents the operational and economic analysis of controlling the cooling water flow in marine steam turbine power plants. The analysis bases on selected designs of the main condenser cooling water pumps and makes use of the results of investigations performed in inland power plants. Special attention was focused on marine aspects of the operation of those systems.


2021 ◽  
Vol 8 (4) ◽  
pp. 519-526
Author(s):  
Mohammad J. Ben Salamah ◽  
Mehmet Savsar

Large flowmeters are used in many industrial facilities, including power plants, cooling-water stations for refineries, and petrochemical plants. These flowmeters are employed for various purposes, including billing. Just like all machines, flowmeters are subject to failure. Drift is a particular type of failure in which the flowmeter produces an error in measurement that would incrementally increase with time. Maintenance technicians calibrate and fix all measuring equipment, including flowmeters. Nevertheless, downsizing policies and budget cuts in most contemporary industrial facilities have made these technicians overwhelmed with work. A mathematical and computer-based drift-detection scheme is developed to reduce the burden of the maintenance staff. The detection scheme only uses the flowmeter's flow data and the discrete Fourier transform (DFT). The detection scheme was applied over the flow data from an actual flowmeter that drifted during its operation. DFT application over the data produced by the flowmeter led to expected results and other unexpected results. This paper discusses both results and suggests areas for further study. Practically speaking, the scheme would facilitate the early detection of drifts in flowmeters having seasonal flow regardless of type or manufacturer.


2010 ◽  
Vol 90 (3) ◽  
pp. 189-206 ◽  
Author(s):  
Mila Pavlovic ◽  
Rajko Golic ◽  
Dejan Sabic

The territory of the municipality of Mali Zvornik is, from the aspect of morphology and spatial-functional structure, a heterogeneous area. It is located in the valley of the Drina River and in hilly-mountainous part of Podrinjske mountains. The area of the municipality is 184 km?, with 14076 inhabitants (2002). The importance of water resources for the development of the municipality, particularly of the hydropower plant (HPP) ?Zvornik?, is analyzed in this paper. Inadequate use of hydro-energetic potential, possibilities for construction of new hydropower plants and economic reasons for their construction are also emphasized. The priorities of the development of hydraulic engineering are defined in relation to morphological and hydrological conditions. They refer to increase of power of the HPP ?Zvornik? and construction of small-scale hydropower plants in hilly-mountainous part of municipality. Considering depopulation processes in the villages of Mali Zvornik, hydraulic engineering, together with agriculture, forestry, exploitation of mineral goods and tourism, can be one of the factors of demographic and economic revitalization of this area.


1983 ◽  
Vol 15 (10) ◽  
pp. 89-99
Author(s):  
Bo Møller ◽  
K I Dahl-Madsen

In the years from 1970-1982 52 site studies and monitoring studies have been carried out at major existing and planned power plants. The results from the studies have been used in a planning system for water quality. This planning system, which is water quality related, is described in this paper. An important part of the planning system is the description of size and distribution of excess temperature fields and the related biological conditions. In the biological monitoring, emphasis is placed on the benthic community as more vulnerable to the cooling water discharge. The studies have shown that the excess temperature field within the 1-2° isotherm can produce measurable changes in the benthic community. The temperature effect in the pelagic zone is marginal, however, some effects are seen at sites with a deep water intake of nutrient rich water. Entrainment of fish and Zooplankton can be important in bays and estuaries.


2012 ◽  
Vol 16 (suppl. 2) ◽  
pp. 375-385 ◽  
Author(s):  
Mirjana Lakovic ◽  
Slobodan Lakovic ◽  
Milos Banjac

The paper presents a theoretical analysis of the cooling system of a 110 MW coal-fired power plant located in central Serbia, where eight evaporative towers cool down the plant. An updated research on the evaporative tower cooling system has been carried out to show the theoretical analysis of the tower heat and mass balance, taking into account the sensible and latent heat exchanged during the processes which occur inside these towers. Power plants which are using wet cooling towers for cooling condenser cooling water have higher design temperature of cooling water, thus the designed condensing pressure is higher compared to plants with a once-through cooling system. Daily and seasonal changes further deteriorate energy efficiency of these plants, so it can be concluded that these plants have up to 5% less efficiency compared to systems with once-through cooling. The whole analysis permitted to evaluate the optimal conditions, as far as the operation of the towers is concerned, and to suggest an improvement of the plant. Since plant energy efficiency improvement has become a quite common issue today, the evaluation of the cooling system operation was conducted under the hypothesis of an increase in the plant overall energy efficiency due to low cost improvement in cooling tower system.


2014 ◽  
Vol 672-674 ◽  
pp. 1743-1747
Author(s):  
Li Qiang Zhang ◽  
Mo Jie Sun ◽  
Ting Zhang ◽  
Zhao Li ◽  
Huan Wei Wang

China is a country lacking of freshwater. With the water pollution from bad to worse, saving water become a serious matter which needs to be settled at once. In order to ensure the system working safely and the water quality, most power plants enable the circle cooling water to work in the low consistence, need more drainage and complement water which will make large waste of water. The good water quantity means that the water doesn’t make the furring and make cautery to the equipment. So we can improve the concentrated multiples of the cycle cooling water to save the water. Based on the specialty of the water used in the power plants, this subject study how to estimate the stability, doing the instrument and watching the stability degree, providing the scientific basis for disposing the circling water. After lots of experiments, we use the stability index as the estimation and use the pH determination as the alkalinity determination.The instrument uses the date collecting card to collect and use computer to dispose the date and control the instrument. The system inspects the stability of the cycle cooling water real time automatically.


Sign in / Sign up

Export Citation Format

Share Document