Effects of Water Stress on Crop Production

Author(s):  
Victor O. Sadras ◽  
Francisco J. Villalobos ◽  
Francisco Orgaz ◽  
Elias Fereres
Keyword(s):  
2016 ◽  
Vol 38 (3) ◽  
pp. 363 ◽  
Author(s):  
Frank Akiyoshi Kuwahara ◽  
Gustavo Maia Souza ◽  
Kezia Aparecida Guidorizi ◽  
Ciniro Costa ◽  
Paulo Roberto de Lima Meirelles

Water deficiency during the dry seasons influences the relationship between water and gas exchange in tropical grasses, reducing their productive potential. In addition, the phosphorus (P) deficiency Brazilian soils adds to the set of factors limiting crop production. In this context, the objective of this study was to evaluate the responses of different tropical forage species to phosphorus supplementation as mitigating the damage caused by water stress. Seeds of Urochloa brizantha cv. MG-4, Urochloa decumbens cv. Basilisk, Panicum maximum cv. Áries, Panicum maximum cv. Tanzânia and Paspalum atratum cv. Pojuca were germinated in pots containing 10 liters of red-yellow Acrisol type soil. Experiments were conducted by combining levels of phosphorus, 8,0 and 100,0 mg of P dm-3, with two irrigation regimes, 100 and 40% replacement of transpired water. The biometric parameters, photosynthetic capacity, leaf water potential and soil chemical characteristics were evaluated, and the data was submitted to analysis of variance (ANOVA, p < 0.05), and subsequently the means were compared using a Tukey test (p < 0.05). The results showed for tropical grasses grown under water stress, there is a clear mitigating effect of phosphorus supplementation, especially on the maintenance of biomass growth. 


2020 ◽  
Author(s):  
Iman Haqiqi ◽  
Danielle S. Grogan ◽  
Thomas W. Hertel ◽  
Wolfram Schlenker

Abstract. Agricultural production and food prices are affected by hydroclimatic extremes. There has been a large literature measuring the impacts of individual extreme events (heat stress or water stress) on agricultural and human systems. Yet, we lack a comprehensive understanding of the significance and the magnitude of the impacts of compound extremes. Here, we combine a high-resolution weather product with fine-scale outputs of a hydrological model to construct functional indicators of compound hydroclimatic extremes for agriculture. Then, we measure the impacts of individual and compound extremes on crop yields focusing on the United States during the 1981–2015 period. Supported by statistical evidence, we confirm that wet heat is more damaging than dry heat for crops. We show that the average damage from heat stress has been up to four times more severe when combined with water stress; and the value of water experiences a four-fold increase on hot days. In a robust framework with only a few parameters of compound extremes, this paper also improves our understanding of the conditional marginal value (or damage) of water in crop production. This value is critically important for irrigation water demand and farmer decision-making – particularly in the context of supplemental irrigation and sub-surface drainage.


2014 ◽  
Vol 41 (No. 4) ◽  
pp. 192-200 ◽  
Author(s):  
C. Penella ◽  
S.G. Nebauer ◽  
S. López-Galarza ◽  
A. SanBautista ◽  
A. Rodríguez-Burruezo ◽  
...  

&nbsp;Water stress is a major environmental factor that limits crop production and it is important to develop crop varieties with higher yield under water scarcity. Increased pepper tolerance to water stress through grafting onto robust rootstocks could be an optimal alternative in the context of environmentally friendly agriculture. Our work evaluated the behaviour of 18 pepper genotypes during vegetative and reproductive stages under water stress in order to select tolerant genotypes to be used as rootstocks for pepper cultivation. The pepper tolerance screening was based on photosynthetic parameters. The genotypes Atlante, C-40, Serrano, PI-152225, ECU-973, BOL-58 and NuMex Conquistador were revealed as the most tolerant genotypes to water stress because they maintained net photosynthetic rate levels under water stress conditions. The selected genotypes were validated as rootstocks on a pepper cultivar in terms of productivity under severe water stress. Plants grafted onto cvs Atlante, PI-152225 and ECU-973 showed higher marketable yields when compared with ungrafted cultivar. &nbsp;


1991 ◽  
Vol 116 (1) ◽  
pp. 63-66 ◽  
Author(s):  
E. A. Rechel ◽  
W. R. DeTar ◽  
D. Ballard

SUMMARYThe ability to detect and measure water stress accurately is critical for optimizing crop production. The Crop Water Stress Index (CWSI), the linear relationship of the difference between foliage and air temperatures as a function of the air vapour pressure deficit, is one widely used method. Under well-watered conditions, a ‘baseline’ is derived that is crop specific and presumed fairly constant, despite differences in development and physiology. This study reports changes in the baseline of the CWSI for lucerne crops not subjected to water shortage over 3 years. Studies of lucerne in California from April 1986 to October 1988 used the CWSI to plan irrigations. It was necessary to re-establish the baseline periodically throughout the experiment. In the first year it was similar to that reported in the literature, but in the second year it had a statistically significant steeper slope and higher intercept. In the third year, the regression equation was similar to that in the first year. The changes in the baseline are thought to be a result of crop age rather than year-to-year weather fluctuations. The baseline needs to be determined periodically as the crop matures, to ensure accurate interpretation of plant water stress.


Metabolites ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 219 ◽  
Author(s):  
Motiki Mofokeng ◽  
Gerhard Prinsloo ◽  
Hintsa Araya ◽  
Christian du Plooy ◽  
Ntshakga Sathekge ◽  
...  

Competition for water between agricultural and non-agricultural economic sectors hampers agricultural production, especially in water-scarce regions. Understanding crop responses in terms of yield and quality to irrigation is an important factor in designing appropriate irrigation management for optimal crop production and quality. Pelargonium sidoides DC., often harvested from the wild, is in high demand in the informal market and for commercial formulations. Agricultural production of high-quality materials through cultivation can help reduce pressure on its wild populations. This study aimed at determining the effects of water and nitrogen on P. sidoides yield and metabolite production. The irrigation treatments applied were 30%, 50%, and 70% of an allowable depletion level (ADL), while the nitrogen (N) levels were 0 (control), 50, 100, and 150 kg ha−1. The 30% ADL resulted in a significantly higher biomass and root yield. Nitrogen at 50 and 100 kg ha−1 resulted in a significantly higher biomass yield, compared to the N control. An increase in sugars and citrate cycle components was observed for the well-watered 30% ADL treatment, whereas water-stressed (50% and 70% ADL) treatments increased alanine, aspartate, and glutamate metabolism, increasing levels of asparagine, 4-aminobutyrate, and arginine. The treatments had no significant effect on the root content of esculin, scopoletin, and umckalin. Water stress induced metabolite synthesis to mitigate the stress condition, whereas under no water stress primary metabolites were synthesized. Moreover, cultivation of P. sidoides as a conservation strategy can increase yield without affecting its bioactivity, while providing sustenance for the rural communities.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 559 ◽  
Author(s):  
Lin ◽  
Lin ◽  
Wu ◽  
Chang

Water deficits during the growing season are a major factor limiting crop production. Therefore, reducing water use during crop production by the application of regulated deficit irrigation (RDI) is crucially important in water resources. There are few reports on the biostimulants used for growth and water use efficiency (WUE) in maize (Zea mays Linn.) under RDI. Therefore, the influence of betaine and chitin treatments, alone and in combination, on maize cultivar ‘White Pearl’ was assessed by observing changes in the physiology and morphology of plants exposed to RDI. Plants were grown in plastic pots in greenhouses and maintained under full irrigation (FI) for 1 week until imposing RDI and biostimulants. Plants were then subjected to FI (no water deficiency treatment, field capacity >70%) and RDI (field capacity <50%) conditions until the end of each experiment. Plant agronomic performance, photosynthesis parameters, and WUE values were recorded weekly for 8 weeks and three individual experiments were carried out to assess the efficacy of biostimulants and irrigation treatments. Betaine (0, 50, and 100 mM/plant) was foliage-treated every 2 weeks during Experiment 1, but chitin (0, 2, and 4 g/kg) was applied to the soil at the beginning of Experiment 2. The optimal concentration of each chemical alone or in combination was then applied to the plants as Experiment 3. A factorial experiment design of two factors with different levels under a completely randomized arrangement was used in this investigation. Betaine (50 mM) or chitin (2 g/kg) treatments alone significantly elevated total fresh weight (63.03 or 124.07 g/plant), dry weight (18.00 or 22.34 g/plant), and cob weight (3.15 or 6.04 g/plant) and boosted the water-stress tolerance of the maize under RDI compared to controls. However, a combination treatment of 50 mM betaine and 2 g/kg chitin did not increase plant height, fresh shoot and root weights, dry cob weight, and total dry weight under RDI compared to controls. Soil-plant analysis development (SPAD) values (>30) were effective in detecting plant growth performance and WUE values under RDI. These findings may have greater significance for farming in dry lands and offer information for further physiological studies on maize WUE and water stress tolerance


Weed Science ◽  
2018 ◽  
Vol 66 (6) ◽  
pp. 738-745 ◽  
Author(s):  
Parminder S. Chahal ◽  
Suat Irmak ◽  
Mithila Jugulam ◽  
Amit J. Jhala

AbstractPalmer amaranth (Amaranthus palmeriS. Watson) is the most problematic weed in agronomic crop production fields in the United States. The objective of this study was to determine the effect of degree of water stress on the growth and fecundity ofA. palmeriusing soil moisture sensors under greenhouse conditions. TwoA. palmeribiotypes collected from Nebraska were grown in loam soil maintained at 100%, 75%, 50%, 25%, and 12.5% soil field capacity (FC) corresponding to no, light, moderate, high, and severe water stress levels, respectively. Water was regularly added to pots based on soil moisture levels detected by Watermark or Decagon 5TM sensors to maintain the desired water stress level.Amaranthus palmeriplants maintained at ≤25% FC did not survive more than 35 d after transplanting.Amaranthus palmeriat 100%, 75%, and 50% FC produced similar numbers of leaves (588 to 670 plant−1) based on model estimates; however, plants at 100% FC achieved a maximum height of 178 cm compared with 124 and 88 cm at 75% and 50% FC, respectively. The growth index (1.1×105to 1.4×105cm3plant−1) and total leaf area (571 to 693 cm2plant−1) were also similar at 100%, 75%, and 50% FC.Amaranthus palmeriproduced similar root biomass (2.3 to 3 g plant−1) at 100%, 75%, and 50% FC compared with 0.6 to 0.7 g plant−1at 25% and 12.5% FC, respectively. Seed production was greatest (42,000 seeds plant−1) at 100% FC compared with 75% and 50% FC (14,000 to 19,000 seeds plant−1); however, the cumulative seed germination was similar (38% to 46%) when mother plants were exposed to ≥50% FC. The results of this study show thatA. palmerican survive ≥50% FC continuous water stress conditions and can produce a significant number of seeds with no effect of on seed germination.


2018 ◽  
Vol 61 (5) ◽  
pp. 1653-1666 ◽  
Author(s):  
Huihui Zhang ◽  
Robert Wayne Malone ◽  
Liwang Ma ◽  
Lajpat R. Ahuja ◽  
Saseendran S. Anapalli ◽  
...  

Abstract. Accurate quantification and management of crop evapotranspiration (ET) are critical to optimizing crop water productivity for both dryland and irrigated agriculture, especially in the semiarid regions of the world. In this study, four weighing lysimeters in Bushland, Texas, were planted to maize in 1994 with two fully irrigated and two non-irrigated for measuring crop ET. The Root Zone Water Quality Model (RZWQM2) was used to evaluate soil water balance and crop production with potential evapotranspiration (PET) estimated from either the Shuttleworth-Wallace method (PTSW) or the ASCE standardized alfalfa reference ET multiplied by crop coefficients (PTASCE). As a result, two water stress factors were defined from actual transpiration (AT) and were tested in the model against the lysimeter data, i.e., AT/PTSW and AT/PTASCE. For both water stress factors, the simulated daily ET values were reasonably close to the measured values, with underestimated ET during mid-growing stage in both non-irrigated lysimeters. Root mean squared deviations (RMSDs) and relative RMSDs (RMSD/observed mean) values for leaf area index, biomass, soil water content, and daily ET were within simulation errors reported earlier in the literature. For example, the RMSDs of simulated daily ET were less than 1.52 mm for all irrigated and non-irrigated lysimeters. Overall, ET was simulated within 3% of the measured data for both fully irrigated lysimeters and undersimulated by less than 11% using both stress factors for the non-irrigated lysimeters. Our results suggest that both methods are promising for simulating crop production and ET under irrigated conditions, but the methods need to be improved for dryland and non-irrigated conditions. Keywords: ET, RZWQM modeling, Stress factor, Weighing lysimeter.


2008 ◽  
Vol 35 (10) ◽  
pp. 925 ◽  
Author(s):  
Youhong Song ◽  
Colin Birch ◽  
Jim Hanan

Substantial progress in modelling crop architecture has been made under optimal watering conditions; however, crop production is often exposed to water stress. In this research, we develop methods for implementing the simulation of maize (Zea mays L.) canopy architectural development under water stress using data from a maize field trial in 2006–07. Data of leaf number, leaf and internode extension were collected using non-destructive and destructive sampling at 2–3 day intervals. Water stress reduced the extension rate of organs and, therefore, their final length, the reduction being greater as severity of water stress increased. The duration of extension of organs in most phytomers was not significantly affected by water stress. Also, the rate of extension during the linear phase responded linearly to fraction of extractable soil water. An existing 3-D architectural model ADEL-Maize was revised using relationships developed in this study to better incorporate effects of water stress on organ extension and production. Simulated canopy production under three water regimes was validated by comparing predicted final leaf and internode length, plant height and leaf area to independent observations. The analysis and simulation showed that maize organ extension and final length under water stress can be adequately represented by simple linear patterns that are easily integrated into models.


Sign in / Sign up

Export Citation Format

Share Document