Calculation of Standard Deviation of Concentration Using a Second-Order Closure Theory

Author(s):  
Zorica Milivoj Podrascanin ◽  
Borivoj Rajkovic
2015 ◽  
Vol 17 (2) ◽  
pp. 371-400 ◽  
Author(s):  
Roman Pascal Schaerer ◽  
Manuel Torrilhon

AbstractMoment equations provide a flexible framework for the approximation of the Boltzmann equation in kinetic gas theory. While moments up to second order are sufficient for the description of equilibrium processes, the inclusion of higher order moments, such as the heat flux vector, extends the validity of the Euler equations to non-equilibrium gas flows in a natural way.Unfortunately, the classical closure theory proposed by Grad leads to moment equations, which suffer not only from a restricted hyperbolicity region but are also affected by non-physical sub-shocks in the continuous shock-structure problem if the shock velocity exceeds a critical value. Amore recently suggested closure theory based on the maximum entropy principle yields symmetric hyperbolic moment equations. However, if moments higher than second order are included, the computational demand of this closure can be overwhelming. Additionally, it was shown for the 5-moment system that the closing flux becomes singular on a subset of moments including the equilibrium state.Motivated by recent promising results of closed-form, singular closures based on the maximum entropy approach, we study regularized singular closures that become singular on a subset of moments when the regularizing terms are removed. In order to study some implications of singular closures, we use a recently proposed explicit closure for the 5-moment equations. We show that this closure theory results in a hyperbolic system that can mitigate the problem of sub-shocks independent of the shock wave velocity and handle strongly non-equilibrium gas flows.


1972 ◽  
Vol 39 (2) ◽  
pp. 535-538 ◽  
Author(s):  
A. J. Schiff ◽  
J. L. Bogdanoff

An estimator for the standard deviation of a natural frequency in terms of second-order statistical properties of the parameters of the system is derived. Results for one simple example is presented in this part and are compared with theoretical and Monte Carlo results. Further results and discussion will be presented in Part 2, ASME Paper No. 71-WA/APM-8.


2021 ◽  
Author(s):  
Kenichi Tatsumi ◽  
Noa Igarashi ◽  
Xiao Mengxue

Abstract Background The objective of this study is twofold. First, ascertain the important variables that predict tomato yields from plant height (PH) and vegetation index (VI) maps. The maps were derived from images taken by unmanned aerial vehicles (UAVs). Second, examine the accuracy of predictions of tomato fresh shoot masses (SM), fruit weights (FW), and the number of fruits (FN) from multiple machine learning algorithms using selected variable sets. To realize our objective, ultra-high-resolution RGB and multispectral images were collected by a UAV on ten days in 2020’s tomato growing season. From these images, 756 total variables, including first- (e.g., average, standard deviation, skewness, range, and maximum) and second-order (e.g., gray-level co-occurrence matrix features and growth rates of PH and VIs) statistics for each plant, were extracted. Several selection algorithms (i.e., Boruta, DALEX, genetic algorithm, least absolute shrinkage and selection operator, and recursive feature elimination) were used to select the variable sets useful for predicting SM, FW, and FN. Random forests, ridge regressions, and support vector machines were used to predict the yield using the top five selected variable sets. Results First-order statistics of PH and VIs collected during the early to mid-fruit formation periods, about one month prior to harvest, were important variables for predicting SM. Similar to the case for SM, variables collected approximately one month prior to harvest were important for predicting FW and FN. Furthermore, variables related to PH were unimportant for prediction. Compared with predictions obtained using only first-order statistics, those obtained using the second-order statistics of VIs were more accurate for FW and FN. Conclusions In addition to basic statistics (e.g., average and standard deviation), we derived second-order statistics of PH and VIs at the plant level using the ultra-high resolution UAV images. Our findings indicated that our variable selection method reduced the number variables needed for tomato yield prediction, improving the efficiency of phenotypic data collection and assisting with the selection of high-yield lines within breeding programs.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Amos E. Gera

A new procedure for determining the acceptance or rejection of a system that undergoes a start-up demonstration set of tests is presented. It is a generalization of the recently introduced CSDF model (consecutive successes distant failures). According to the new total successes consecutive successes total failures distant failures (TSCSTFDF) procedure, a unit is accepted when either a total number of successful tests or a specified number of consecutive successes are observed before a total number of failures or the occurrence of near failures which are too close to each other. The practical advantage of this new procedure is the significant reduction in the expected number of required tests together with improved second-order statistics (standard deviation).


2008 ◽  
Vol 08 (01) ◽  
pp. 47-59
Author(s):  
A. V. N. MANJUNATH ◽  
K. G. HEMANTHA ◽  
S. NOUSHATH

In this paper, we propose a novel skew estimation technique for binary document images based on Boundary Growing Method (BGM), thinning and moments. BGM helps in extracting the text line blocks from the document. Thinning1 is performed to fit the best line for extracted text line blocks. Further, skew is computed for thinned line using second order moments. Several experiments have been conducted on various types of documents such as documents containing south Indian languages, English documents, journals, text with picture, noisy images, and document with different fonts and resolutions, to reveal the robustness of the proposed method. Based on the experimental results we have realized that the proposed method outperforms existing methods both in terms of mean and standard deviation.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Kenichi Tatsumi ◽  
Noa Igarashi ◽  
Xiao Mengxue

Abstract Background The objective of this study is twofold. First, ascertain the important variables that predict tomato yields from plant height (PH) and vegetation index (VI) maps. The maps were derived from images taken by unmanned aerial vehicles (UAVs). Second, examine the accuracy of predictions of tomato fresh shoot masses (SM), fruit weights (FW), and the number of fruits (FN) from multiple machine learning algorithms using selected variable sets. To realize our objective, ultra-high-resolution RGB and multispectral images were collected by a UAV on ten days in 2020’s tomato growing season. From these images, 756 total variables, including first- (e.g., average, standard deviation, skewness, range, and maximum) and second-order (e.g., gray-level co-occurrence matrix features and growth rates of PH and VIs) statistics for each plant, were extracted. Several selection algorithms (i.e., Boruta, DALEX, genetic algorithm, least absolute shrinkage and selection operator, and recursive feature elimination) were used to select the variable sets useful for predicting SM, FW, and FN. Random forests, ridge regressions, and support vector machines were used to predict the yield using the top five selected variable sets. Results First-order statistics of PH and VIs collected during the early to mid-fruit formation periods, about one month prior to harvest, were important variables for predicting SM. Similar to the case for SM, variables collected approximately one month prior to harvest were important for predicting FW and FN. Furthermore, variables related to PH were unimportant for prediction. Compared with predictions obtained using only first-order statistics, those obtained using the second-order statistics of VIs were more accurate for FW and FN. The prediction accuracy of SM, FW, and FN by models constructed from all variables (rRMSE = 8.8–28.1%) was better than that from first-order statistics (rRMSE = 10.0–50.1%). Conclusions In addition to basic statistics (e.g., average and standard deviation), we derived second-order statistics of PH and VIs at the plant level using the ultra-high resolution UAV images. Our findings indicated that our variable selection method reduced the number variables needed for tomato yield prediction, improving the efficiency of phenotypic data collection and assisting with the selection of high-yield lines within breeding programs.


Author(s):  
W. L. Bell

Disappearance voltages for second order reflections can be determined experimentally in a variety of ways. The more subjective methods, such as Kikuchi line disappearance and bend contour imaging, involve comparing a series of diffraction patterns or micrographs taken at intervals throughout the disappearance range and selecting that voltage which gives the strongest disappearance effect. The estimated accuracies of these methods are both to within 10 kV, or about 2-4%, of the true disappearance voltage, which is quite sufficient for using these voltages in further calculations. However, it is the necessity of determining this information by comparisons of exposed plates rather than while operating the microscope that detracts from the immediate usefulness of these methods if there is reason to perform experiments at an unknown disappearance voltage.The convergent beam technique for determining the disappearance voltage has been found to be a highly objective method when it is applicable, i.e. when reasonable crystal perfection exists and an area of uniform thickness can be found. The criterion for determining this voltage is that the central maximum disappear from the rocking curve for the second order spot.


Author(s):  
Dimitrij Lang

The success of the protein monolayer technique for electron microscopy of individual DNA molecules is based on the prevention of aggregation and orientation of the molecules during drying on specimen grids. DNA adsorbs first to a surface-denatured, insoluble cytochrome c monolayer which is then transferred to grids, without major distortion, by touching. Fig. 1 shows three basic procedures which, modified or not, permit the study of various important properties of nucleic acids, either in concert with other methods or exclusively:1) Molecular weights relative to DNA standards as well as number distributions of molecular weights can be obtained from contour length measurements with a sample standard deviation between 1 and 4%.


2020 ◽  
Vol 29 (3) ◽  
pp. 429-435
Author(s):  
Patricia C. Mancini ◽  
Richard S. Tyler ◽  
Hyung Jin Jun ◽  
Tang-Chuan Wang ◽  
Helena Ji ◽  
...  

Purpose The minimum masking level (MML) is the minimum intensity of a stimulus required to just totally mask the tinnitus. Treatments aimed at reducing the tinnitus itself should attempt to measure the magnitude of the tinnitus. The objective of this study was to evaluate the reliability of the MML. Method Sample consisted of 59 tinnitus patients who reported stable tinnitus. We obtained MML measures on two visits, separated by about 2–3 weeks. We used two noise types: speech-shaped noise and high-frequency emphasis noise. We also investigated the relationship between the MML and tinnitus loudness estimates and the Tinnitus Handicap Questionnaire (THQ). Results There were differences across the different noise types. The within-session standard deviation averaged across subjects varied between 1.3 and 1.8 dB. Across the two sessions, the Pearson correlation coefficients, range was r = .84. There was a weak relationship between the dB SL MML and loudness, and between the MML and the THQ. A moderate correlation ( r = .44) was found between the THQ and loudness estimates. Conclusions We conclude that the dB SL MML can be a reliable estimate of tinnitus magnitude, with expected standard deviations in trained subjects of about 1.5 dB. It appears that the dB SL MML and loudness estimates are not closely related.


Sign in / Sign up

Export Citation Format

Share Document