Assessment Architecture and Performance of Industrial Programmable Electronic Systems (PES) with Particular Reference to Robotic Safety

Author(s):  
R Bell
2015 ◽  
Vol 17 (47) ◽  
pp. 31371-31396 ◽  
Author(s):  
Xavier Andrade ◽  
David Strubbe ◽  
Umberto De Giovannini ◽  
Ask Hjorth Larsen ◽  
Micael J. T. Oliveira ◽  
...  

We explore how strategies to simulate various phenomena of electronic systems have been implemented in the Octopus code, using the versatility and performance of real-space grids.


Author(s):  
G. Yadagiri ◽  
K. K. Goswami ◽  
K. S. Gurumurthy ◽  
Satyam ◽  
K. N. Shankara

The complexity and performance of the electronic components and systems is increasing and placing greater demands on compact packaging and interconnection technologies. Multilayer thick film technology is one of the important technologies adopted in the miniaturization of electronic systems. Normally only interconnections are made in the intermediate layers. The possibility of fabricating resistors along with interconnections in the intermediate layers using conventional thick film materials using co-firing process has been examined in this paper. Normally multilayer structures are fabricated by printing / drying / firing of each layer separately starting from the bottom most layer (sequential processing). In this process the bottom layers undergo sintering many times. To avoid many firing cycles and to save power and processing time, a study is taken up to examine the effects of co-firing on the multilayer structure with embedded resistors. The results of the study are presented in this paper.


2020 ◽  
Vol 18 (1) ◽  
pp. 31-38
Author(s):  
Vivek Pogra ◽  
Santosh Kumar Vishvakarma ◽  
Balwinder Raj

This paper proposes a novel design of application specific integrated circuit (ASIC) which is capable of connecting sensor network and other electronic systems to the Internet. The transfer of data between different networks and internet of things (IoT) platform is controlled by IoT platform with the help of instruction sent to ASIC. ASIC will act as serial peripheral interface (SPI) master to all connected networks and data will be transferred serially between them. The different ASIC modules are SPI module, control module, memory module and data/instruction decoder with additional modules built-in self-test (BIST) and direct memory access (DMA). The proposed ASIC will consume less power as compared to conventional microcontroller/microprocessor due to the fact that it is designed for IoT applications. It is described in VHDL at RTL level and simulation is done on the Vivado 2016.2.


MRS Bulletin ◽  
1998 ◽  
Vol 23 (4) ◽  
pp. 39-47 ◽  
Author(s):  
E.A. Fitzgerald ◽  
L.C. Kimerling

The need for integrated optical interconnects in electronic systems is derivedfrom the cost and performance of electronic systems. If we examine the cost of all interconnects, it becomes apparent that there is an exponential growth in cost per interconnect with the length of the interconnect. A remarkable feature of interconnect cost is that the exponential relation holds over all length scales—from the shortest interconnects on a chip to the longest interconnects in global telecommunications networks. Longer interconnects are drastically more expensive, and these costs are ultimately related to the labor cost associated with each interconnect. Given this economic pressure, it is not surprising that there is a driving force to condense more functions locally on the same chip, board, or system. In condensing these functions, the number of long interconnects are decreased and the overall cost of the electronic system decreases dramatically. A specific glaring example of this driving force is Si complementary-metal-oxide-semiconductor (CMOS) technology, especially the case of microprocessors. In the Si microprocessor case, the flood gates to interconnect condensation were opened and the miraculous trend of lower cost for exponentially increasing performance was revealed.


2020 ◽  
Vol 18 (9) ◽  
pp. 700-705
Author(s):  
Vivek Pogra ◽  
Amandeep Singh ◽  
Santosh Kumar Vishvakarma ◽  
Balwinder Raj

This paper proposes a novel design of application specific integrated circuit (ASIC) which is capable of connecting sensor network and other electronic systems to the internet. The transfer of data between different networks and electronic systems is controlled by internet of things (IoT) platform with the help of instruction sent to ASIC. ASIC will act as serial peripheral interface (SPI) master to all connected networks and data will be transferred serially between them. The different ASIC modules are SPI module, control module, memory module and data/instruction decoder with additional modules built-in self-test (BIST) and direct memory access (DMA). The proposed ASIC will consume less power as compared to conventional microcontroller/microprocessor due to SPI feature along with DMA on ASIC for IoT applications. It is described in very high speed integrated circuit hardware description language (VHDL) at register transfer level (RTL) and simulation is done on the Vivado 2016.2.


1986 ◽  
Vol 72 ◽  
Author(s):  
W. H. Knausenberger ◽  
M. R. Pinnel

AbstractRapid technological advances in electronic systems technologies are placing increasingly severe demands on interconnection media. One primary driving force is the evolutionary advance in the scale of integration in silicon with its inherent cost and performance advantages. A second key driving force is the revolutionary development of photonics which is rapidly integrating into most levels of the interconnection heirarchy. The performance of large scale electronic systems will be increasingly dominated and limited by their interconnection environment. To sustain the present rate of growth in the performance of future systems, new technology directions in interconnection will be necessary.This paper will explore the traditional levels of interconnection from IC chip packages to the frame level. It will be shown how the various levels of interconnection interrelate and how all levels must be improved simultaneously to achieve the full performance and cost benefits offered by device advances and photonics. The first major step in this evolution is well underway with the rapid transition to surface mounting of devices. This places new demands on materials and assembly technologies which will be discussed. However, the demands of this first step may eventually appear to be minor compared to those yet to come if current trends continue. Several scenarios for this future will be considered and related to the challenges placed on interconnection technology hardware and materials in terms of performance characteristics such as density, speed and heat dissipation.


2019 ◽  
Vol 5 (1) ◽  
pp. eaav3294 ◽  
Author(s):  
Amay J. Bandodkar ◽  
Philipp Gutruf ◽  
Jungil Choi ◽  
KunHyuck Lee ◽  
Yurina Sekine ◽  
...  

Wearable sweat sensors rely either on electronics for electrochemical detection or on colorimetry for visual readout. Non-ideal form factors represent disadvantages of the former, while semiquantitative operation and narrow scope of measurable biomarkers characterize the latter. Here, we introduce a battery-free, wireless electronic sensing platform inspired by biofuel cells that integrates chronometric microfluidic platforms with embedded colorimetric assays. The resulting sensors combine advantages of electronic and microfluidic functionality in a platform that is significantly lighter, cheaper, and smaller than alternatives. A demonstration device simultaneously monitors sweat rate/loss, pH, lactate, glucose, and chloride. Systematic studies of the electronics, microfluidics, and integration schemes establish the key design considerations and performance attributes. Two-day human trials that compare concentrations of glucose and lactate in sweat and blood suggest a potential basis for noninvasive, semi-quantitative tracking of physiological status.


1994 ◽  
Vol 360 ◽  
Author(s):  
R. E. Newnham ◽  
J. F. Fernandez ◽  
K. A. Markowski ◽  
J. T. Fielding ◽  
A. Dogan ◽  
...  

AbstractComposite materials have found a number of structural applications, but their use in the electronics industry has been relatively limited. As the function of electroceramic composites are better understood, we can expect this picture to change. In this paper some of the piezoelectric composite sensor and actuator studies carried out in our laboratory during the past decade will be reviewed. The ideas that provide a basic understanding of functional composites have previously been discussed [1]. This paper describes recent advances in the processing and properties of composites possessing 0-3, 1-3, and 2-2 connectivity made of polymers, metals and ferroelectric ceramics. The introduction of open spaces in the previous connectivity patterns allows the development of new designs of several piezoelectric composites with connectivity patterns of 0(0)-3, 1(0)-3, 2(0)-2-2, and 2-0-2. As in most electronic systems that are developed with improved properties a push toward lower cost and smaller sizes of the piezoelectric ceramics, together with improved reliability and performance occurs. The piezocomposites with open spaces in their structures clearly demonstrate the growth of the functional ceramics into the field of the smart ceramics as the materials for the beginning of the next century.


2012 ◽  
Vol 170-173 ◽  
pp. 2893-2898
Author(s):  
Li Zhong Song ◽  
Huan Feng Hong ◽  
Jing Hong Xue

The Vivaldi antennas are widely used in many wide band electronic systems for its good performances. This paper designed and simulated two kinds of Vivaldi antennas for wide band passive radar applications, which are the antipodal Vivaldi antenna fed by strip line and antipodal Vivaldi antenna fed by microstrip line. The specific design parameters and the radiation performances of each kind of vivaldi antenna are provided over the operating frequency range of 3GHz to 11GHz. Furthermore a circular antenna array with six Vivaldi antenna elements fed by microstrip lines was also simulated to obtain its radiation performances over the operating frequency range of 3GHz to 8GHz. The simulation results demonstrate the designed Vivaldi antennas have acceptable performances of voltage standing wave ratio (VSWR), patterns and gains, so they can be used in practical wide band radars.


Author(s):  
Andrei Blinov ◽  
Dmitri Vinnikov ◽  
Tõnu Lehtla

Cooling Methods for High-Power Electronic Systems Thermal management is a crucial step in the design of power electronic applications, especially railroad traction and automotive systems. Mass/size parameters, robustness and reliability of the power electronic system greatly depend on the cooling system type and performance. This paper presents an approximate parameter estimation of the thermal management system required as well as different commercially available cooling solutions. Advantages and drawbacks of different designs ranging from simple passive heatsinks to complex evaporative systems are discussed.


Sign in / Sign up

Export Citation Format

Share Document