Conceptual Framework for Changes of Extremes of the Hydrological Cycle With Climate Change

1999 ◽  
pp. 327-339 ◽  
Author(s):  
Kevin E. Trenberth
Author(s):  
Jonas Tallberg ◽  
Karin Bäckstrand ◽  
Jan Aart Scholte

Legitimacy is central for the capacity of global governance institutions to address problems such as climate change, trade protectionism, and human rights abuses. However, despite legitimacy’s importance for global governance, its workings remain poorly understood. That is the core concern of this volume, which engages with the overarching question: whether, why, how, and with what consequences global governance institutions gain, sustain, and lose legitimacy. This introductory chapter explains the rationale of the book, introduces its conceptual framework, reviews existing literature, and presents the key themes of the volume. It emphasizes in particular the volume’s sociological approach to legitimacy in global governance, its comparative scope, and its comprehensive treatment of the topic. Moreover, a specific effort is made to explain how each chapter moves beyond existing research in exploring the book’s three themes: (1) sources of legitimacy, (2) processes of legitimation and delegitimation, and (3) consequences of legitimacy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lennart Quante ◽  
Sven N. Willner ◽  
Robin Middelanis ◽  
Anders Levermann

AbstractDue to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming has two opposing influences; increasing humidity enables intense snowfall, whereas higher temperatures decrease the likelihood of snowfall. Here we show an intensification of extreme snowfall across large areas of the Northern Hemisphere under future warming. This is robust across an ensemble of global climate models when they are bias-corrected with observational data. While mean daily snowfall decreases, both the 99th and the 99.9th percentiles of daily snowfall increase in many regions in the next decades, especially for Northern America and Asia. Additionally, the average intensity of snowfall events exceeding these percentiles as experienced historically increases in many regions. This is likely to pose a challenge to municipalities in mid to high latitudes. Overall, extreme snowfall events are likely to become an increasingly important impact of climate change in the next decades, even if they will become rarer, but not necessarily less intense, in the second half of the century.


2021 ◽  
Vol 166 (3-4) ◽  
Author(s):  
Ann Y. Liu ◽  
Juli M. Trtanj ◽  
Erin K. Lipp ◽  
John M. Balbus

AbstractEnvironmental health indicators are helpful for tracking and communicating complex health trends, informing science and policy decisions, and evaluating public health actions. When provided on a national scale, they can help inform the general public, policymakers, and public health professionals about important trends in exposures and how well public health systems are preventing those exposures from causing adverse health outcomes. There is a growing need to understand national trends in exposures and health outcomes associated with climate change and the effectiveness of climate adaptation strategies for health. To date, most indicators for health implications of climate change have been designed as independent, individual metrics. This approach fails to take into account how exposure-outcome pathways for climate-attributable health outcomes involve multiple, interconnected components. We propose reframing climate change and health indicators as a linked system of indicators, which can be described as follows: upstream climate drivers affect environmental states, which then determine human exposures, which ultimately lead to health outcomes; these climate-related risks are modified by population vulnerabilities and adaptation strategies. We apply this new conceptual framework to three illustrative climate-sensitive health outcomes and associated exposure-outcome pathways: pollen allergies and asthma, West Nile virus infection, and vibriosis.


2012 ◽  
Vol 12 (12) ◽  
pp. 3775-3787 ◽  
Author(s):  
S. Khan

Abstract. Disasters are frequent, ongoing and very likely to increase in the future with global climate change. Significant investments in hazard mitigation, policies and emergency management have so far failed to stop disasters. Their recurrences suggest that either there are some gaps in the current response or a different perspective is needed on the way hazards have been dealt with to date. This paper views disasters through the lens of hazardscape, which shows the context of both hazard occurrence and response. It finds that one major cause of response failure is inadequate consideration of the local hazardscape in planning. It notes that although globalization of hazard response practices is progressive, it has been less successful in dealing with local variations in vulnerability. This paper presents the conceptual framework of hazardscape, and illustrates various shortcomings of the current responses in relation to the local hazardscapes where they are adopted. It recommends a holistic approach that considers various aspect of the hazardscape in order to plan a response strategy.


Author(s):  
P K Bhunya ◽  
Sanjay Kumar ◽  
Sunil Gurrapu ◽  
M K Bhuyan

In recent times, several studies focused on the global warming that may affect the hydrological cycle due to intensification of temporal and spatial variations in precipitation. Such climatic change is likely to impact significantly upon freshwater resources availability. In India, demand for water has already increased manifold over the years due to urbanization, agriculture expansion, increasing population, rapid industrialization and economic development. Numerous scientific studies also report increases in the intensity, duration, and spatial extents of floods, higher atmospheric temperatures, warmer sea, changes in precipitation patterns, and changing groundwater levels. This work briefly discusses about the present scenario regarding impact of climate change on water resources in India. Due to the insufficient resolution of climate models and their generally crude representation of sub-grid scale and convective processes, little confidence can be placed in any definite predictions of such effects, although a tendency for more heavy rainfall events seems likely, and a modest increase in frequency in floods. Thus to analyses this effect, this work considers real problems about the changing flood characteristics pattern in two river regions, and the effect of spatial and temporal pattern in rainfall. In addition to these, the work also examines the trend of groundwater level fluctuations in few blocks of Ganga–Yamuna and Sutlej-Yamuna Link interfluves region. As a whole, it examines the potential for sustainable development of surface water and groundwater resources within the constraints imposed by climate change.


2018 ◽  
Vol 13 (1) ◽  
pp. 32-43 ◽  
Author(s):  
Umesh Kumar Singh ◽  
Balwant Kumar

Anthropogenic greenhouse gas emission is altering the global hydrological cycle due to change in rainfall pattern and rising temperature which is responsible for alteration in the physical characteristics of river basin, melting of ice, drought, flood, extreme weather events and alteration in groundwater recharge. In India, water demand for domestic, industrial and agriculture purposes have already increased many folds which are also influencing the water resource system. In addition, climate change has induced the surface temperature of the Indian subcontinent by 0.48 ºC in just last century. However, Ganges–Brahmaputra–Meghna (GBM) river basins have great importance for their exceptional hydro-geological settings and deltaic floodplain wetland ecosystems which support 700 million people in Asia. The climatic variability like alterations in precipitation and temperature over GBM river basins has been observed which signifies the GBM as one of the most vulnerable areas in the world under the potential impact of climate change. Consequently, alteration in river discharge, higher runoff generation, low groundwater recharge and melting of glaciers over GBM river basin could be observed in near future. The consequence of these changes due to climate change over GBM basin may create serious water problem for Indian sub-continents. This paper reviews the literature on the historical climate variations and how climate change affects the hydrological characteristics of different river basins.


2018 ◽  
Vol 38 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Gloria C. Okafor ◽  
Kingsley N. Ogbu

AbstractChanges in runoff trends have caused severe water shortages and ecological problems in agriculture and human well-being in Nigeria. Understanding the long-term (inter-annual to decadal) variations of water availability in river basins is paramount for water resources management and climate change adaptation. Climate change in Northern Nigeria could lead to change of the hydrological cycle and water availability. Moreover, the linkage between climatic changes and streamflow fluctuations is poorly documented in this area. Therefore, this study examined temporal trends in rainfall, temperature and runoff records of Kaduna River basin. Using appropriate statistical tools and participatory survey, trends in streamflow and their linkages with the climate indices were explored to determine their amplifying impacts on water availability and impacts on livelihoods downstream the basin. Analysis indicate variable rainfall trend with significant wet and dry periods. Unlike rainfall, temperature showed annual and seasonal scale statistically increasing trend. Runoff exhibit increasing tendency but only statistically significant on annual scale as investigated with Mann–Kendall trend test. Sen’s estimator values stood in agreement with Mann–Kendall test for all variables. Kendall tau and partial correlation results revealed the influence of climatic variables on runoff. Based on the survey, some of the hydrological implications and current water stress conditions of these fluctuations for the downstream inhabitants were itemized. With increasing risk of climate change and demand for water, we therefore recommend developing adaptive measures in seasonal regime of water availability and future work on modelling of the diverse hydrological characteristics of the entire basin.


Sign in / Sign up

Export Citation Format

Share Document