The use of saltgrass (Distichlis spicata) as a pioneer forage crop in salty environments

Author(s):  
Amnon Bustan ◽  
Dov Pasternak
Author(s):  
R.J. Densley ◽  
G.M. Austin ◽  
I.D. Williams ◽  
R. Tsimba ◽  
G.O. Edmeades

Trade-offs in dry matter (DM) and metabolisable energy (ME) between combinations of three maize silage hybrids varying in maturity from 100-113 CRM and six winter forage options were investigated in a Waikato farmer's field over 2 years. Winter crops were triticale, cut once; oats grazed 1-2 times; and Tama and Feast II Italian ryegrass, each cut or grazed 2-3 times. Greatest DM and ME production (38.9 t/ha; 396 GJ/ha) was from a 113 CRM hybrid followed by a single-cut triticale crop. The most economical sources of DM and ME were obtained from a 100 CRM maize hybrid plus grazed oats (11.8 c/ kg; 1.12 c/MJ), while the cheapest ME source among cut winter forages was a 113 CRM maize hybrid + triticale (1.18 c/MJ). Reliable annual silage production of 30 t DM/ha and 330 GJ ME/ha (or 3000 kg MS/ha) is possible using a late maturing maize hybrid combined with a winter forage crop such as triticale, although the low feed value of the triticale may limit its use as feed for milking cows. Keywords: Italian ryegrass, oats, maize silage, supplements, triticale, winter forage crops


Botany ◽  
2013 ◽  
Vol 91 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Julian C. Verdonk ◽  
Michael L. Sullivan

Gene silencing is a powerful technique that allows the study of the function of specific genes by selectively reducing their transcription. Several different approaches can be used, however they all have in common the artificial generation of single stranded small ribonucleic acids (RNAs) that are utilized by the endogenous gene silencing machinery of the organism. Artificial microRNAs (amiRNA) can be used to very specifically target genes for silencing because only a short sequence of 21 nucleotides of the gene of interest is used. Gene silencing via amiRNA has been developed for Arabidopsis thaliana (L.) Heynh. and rice using endogenous microRNA (miRNA) precursors and has been shown to also work effectively in other dicot species using the arabidopsis miRNA precursor. Here, we demonstrate that the arabidopsis miR319 precursor can be used to silence genes in the important forage crop species alfalfa (Medicago sativa L.) by silencing the expression of a transgenic beta-glucuronidase (GUSPlus) target gene.


2021 ◽  
Vol 22 (9) ◽  
pp. 4634
Author(s):  
Wenxuan Du ◽  
Junfeng Yang ◽  
Lin Ma ◽  
Qian Su ◽  
Yongzhen Pang

The calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) play important roles in plant signal transduction and response to abiotic stress. Plants of Medicago genus contain many important forages, and their growth is often affected by a variety of abiotic stresses. However, studies on the CBL and CIPK family member and their function are rare in Medicago. In this study, a total of 23 CBL and 58 CIPK genes were identified from the genome of Medicago sativa as an important forage crop, and Medicaog truncatula as the model plant. Phylogenetic analysis suggested that these CBL and CIPK genes could be classified into five and seven groups, respectively. Moreover, these genes/proteins showed diverse exon-intron organizations, architectures of conserved protein motifs. Many stress-related cis-acting elements were found in their promoter region. In addition, transcriptional analyses showed that these CBL and CIPK genes exhibited distinct expression patterns in various tissues, and in response to drought, salt, and abscisic acid treatments. In particular, the expression levels of MtCIPK2 (MsCIPK3), MtCIPK17 (MsCIPK11), and MtCIPK18 (MsCIPK12) were significantly increased under PEG, NaCl, and ABA treatments. Collectively, our study suggested that CBL and CIPK genes play crucial roles in response to various abiotic stresses in Medicago.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110244
Author(s):  
Fuyang Tian ◽  
Kelai Xia ◽  
Jin Wang ◽  
Zhanhua Song ◽  
Yinfa Yan ◽  
...  

The harvesting straw feed crops (silage corn, alfalfa, herbaceous mulberry, etc.) was tedious, high-labor-cost, and large-nutrient-loss. A self-propelled straw forage crop harvester, which could realize the integration of cutting, flattening and modulating, chopping, and throwing straw forage crops, was designed. The cutting angle could freely be adjusted between 0° and 8°. The max rotation speed of the flattening roller could reach 590 r/min and could be adjusted consecutively by the hydraulic control device. To verify the performance of this machine, several harvesting experiments of alfalfa, silage corn, and herbaceous mulberry with different moisture, were carried out on this machine. During the experiment, the average working speed of the machine was 1.6 m/s, the cutting height was 40–80 mm, and the flattening rate was 97.14%. It is determined that the suitable cutting speed for harvesting alfalfa is 2131 r/min; the suitable cutting speed for harvesting silage corn is 836 r/min; the suitable cutting speed for harvesting herb mulberry is 1045 r/min. The design of the machine can not only improve labor productivity and reduce the nutrient loss of forage crop but also support the silage harvesting machinery and equipment for forage crop.


2018 ◽  
Vol 507 ◽  
pp. 53-60 ◽  
Author(s):  
Troy D. Hill ◽  
Nathalie R. Sommer ◽  
Caroline R. Kanaskie ◽  
Emily A. Santos ◽  
Autumn J. Oczkowski

2011 ◽  
Vol 38 (3) ◽  
pp. 187 ◽  
Author(s):  
Brynne E. Lazarus ◽  
James H. Richards ◽  
Phoebe E. Gordon ◽  
Lorence R. Oki ◽  
Corey S. Barnes

We investigated genetic differences in salinity tolerance among 20 saltgrass (Distichlis spicata (L.) Greene) genotypes, including constitutive, gender-based and phenotypic plasticity traits, to better understand the basis of adaptation and acclimation by saltgrass in diverse environments. On average, the plants survived NaCl treatments up to ~1 M, with reductions in growth and health that varied with genotype. For these 20 genotypes in a greenhouse study, we showed that greater plasticity in one salt tolerance mechanism was physiologically linked to lesser plasticity in another. Under various levels of constant salinity stress, genotypes employing a strategy of greater plasticity in foliar Na and lesser plasticity in both foliar K : Na and Na turnover rate were better able to substitute Na for K in some cellular functions, especially osmotic adjustment, leading to increased salinity tolerance. Although we observed gender segregation with salinity in the Owens (Dry) Lake Playa (Inyo County, CA, USA) population planted for dust control, from which the genotypes were collected, we did not observe gender differences in salinity tolerance in the greenhouse. Significant physiological plasticity tradeoffs among genotypes, however, did affect overall salinity tolerance and may be important for this species survival in diverse managed and natural habitats.


Author(s):  
Н.Т. Чеботарёв ◽  
Н.Н. Шергина

В условиях Республики Коми в полевом стационарном опыте на дерново-подзолистой легкосуглинистой почве изучена эффективность различных доз органических и минеральных удобрений, а также совместного их применения. Исследования проводили в 1978–2019 годах на опытных полях Института агробиотехнологий ФИЦ Коми НЦ УрО РАН. Целью проводимых исследований было изучение влияния комплексного применения удобрений на продуктивность и качество кормовых культур в шестипольном севообороте. Кормовой севооборот имел следующее чередование культур: картофель, викоовсяная смесь с подсевом многолетних трав, многолетние травы 1 г.п., многолетние травы 2 г.п., викоовсяная смесь, картофель. В результате научных исследований (более 40 лет) установлено, что наиболее эффективной была органоминеральная система удобрений, особенно при внесении 80 т/га торфонавозного компоста (ТНК) и минеральных удобрений. Многолетние исследования показали, что наиболее значительные урожаи кормовых культур (в среднем за три ротации) получены при использовании 80 т/га ТНК и NPK: однолетних трав — 4,4 т/га; многолетних трав — 6,2 и картофеля — 7,1 т/га сухого вещества высокого качества. Содержание сухого вещества в клубнях картофеля в вариантах с NPK составило 18,0–18,8%, на органическом фоне — 18,4–18,9 и при комплексном применении удобрений — 17,1–17,7; в контроле — 19,6%. Количество крахмала в картофеле незначительно различалось по вариантам опыта и равнялось 12,6–13,1%. Содержание нитратов не превышало ПДК (250 мг/кг сырой массы). Количество сухого вещества в однолетних и многолетних травах изменялось незначительно и составляло 19,0–19,8 и 25,0–26,8% соответственно. Установлено, что удобрения способствовали повышению содержания сырого протеина в однолетних и многолетних травах до 13,1–15,0% (в контроле — 11,2%) и 8,8–10,6 % (в контроле — 8,1%) соответственно. The impact of various rates of organic and mineral fertilizers was analyzed in the Komi Republic on sod-podzolic soil with low loam content. The research took place at the Institute of Agricultural Biotechnology in 1978–2019. The goal was to test forage crop productivity and quality under fertilization and six-field crop rotation. Crop rotation happened as follows: potatoes, vetch-oat mixture overseeded by perennial grasses, first-year perennial grasses, second-year perennial grasses, vetch-oat mixture, potatoes. For 40 years the combination of mineral and organic fertilizers was the most effective. The highest yields for three rotations were observed under the application of 80 t ha-1 of peat-manure compost and NPK: annual grasses produced 4.4 t ha-1; perennial grasses — 6.2, and potatoes — 7.1 t ha-1 of high-quality dry matter (DM). Potato tubers accumulated 18.0–18.8% of DM under NPK application, 18.4–18.9 — under organic nutrition, 17.1–17.7 — when using complex fertilization, and 19.6% — in the control. Starch content varied within 12.6–13.1% in potatoes. Nitrate content did not exceed the maximum acceptable concentration (250 mg/kg of raw mass). DM concentrations amounted to 19.0–19.8 and 25.0–26.8% in annual and perennial grasses, respectively. Fertilization increased crude protein amount in annual and perennial grasses up to 13.1–15.0% (versus 11.2% in the control) and 8.8–10.6 % (versus 8.1%), respectively.


Author(s):  
A.G. Elliott ◽  
T.W. Lonsdale

IN two papers read by officers of the Department of Agriculture at the 1936 conference of the New Zealand Grassland Association, the growing of lucernc as a forage crop in districts of relatively high rainfall was dealt with. The area covered by the papers included the Manawatu and west coast from Paraparaumu to the Patea River(I) and Taranaki(n). During the subsequent discussion on these and other papers the present position and general trend in regard to lucernegrowing in the Wairarapa, Eiawke's Eay, and Poverty Bay districts were also touched on. It is the intention here. to review briefly some of the more important points in regard to the cultivation of lucerne in the southern portion of the North Island as discussed at the conference.


Soil Research ◽  
2008 ◽  
Vol 46 (1) ◽  
pp. 37 ◽  
Author(s):  
M. R. Sargeant ◽  
C. Tang ◽  
P. W. G. Sale

Landholder observations indicate that the growth of Distichlis spicata in saline discharge sites improves the soil condition. An extensive soil sampling survey was conducted at the Wickepin field site in Western Australia, where D. spicata had been growing for 8 years, to test the hypothesis that this halophytic grass will make improvements in chemical and physical properties of the soil. Soil measurements included saturated hydraulic conductivity, water-stable aggregates, root length and dry weight, electrical conductivity, pH, and soil nitrogen and carbon. Results confirm that marked differences in soil properties occurred under D. spicata. For example, a 12-fold increase in saturated hydraulic conductivity occurred where D. spicata had been growing for 8 years, compared to adjacent control soil where no grass had been growing. There were also improvements in aggregate stability, with the most notable improvements in the top 0.10 m of soil, again with the greatest improvements occurring where 8 years of growth had occurred. Soil nitrogen and carbon increased under the sward, with the biggest increases occurring in the top 0.10 m of soil. Electrical conductivity measurements were more variable, mostly due to the large spatial and temporal variation encountered. However, the findings generally support the proposition that the growth of D. spicata does not lead to an accumulation of salt within the rooting zone.


1978 ◽  
Vol 7 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Robert J. Reginato ◽  
Sherwood B. Idso ◽  
Ray D. Jackson

Sign in / Sign up

Export Citation Format

Share Document