Maize silage and winter crop options to maximise drymatter and energy for NZ dairy systems

Author(s):  
R.J. Densley ◽  
G.M. Austin ◽  
I.D. Williams ◽  
R. Tsimba ◽  
G.O. Edmeades

Trade-offs in dry matter (DM) and metabolisable energy (ME) between combinations of three maize silage hybrids varying in maturity from 100-113 CRM and six winter forage options were investigated in a Waikato farmer's field over 2 years. Winter crops were triticale, cut once; oats grazed 1-2 times; and Tama and Feast II Italian ryegrass, each cut or grazed 2-3 times. Greatest DM and ME production (38.9 t/ha; 396 GJ/ha) was from a 113 CRM hybrid followed by a single-cut triticale crop. The most economical sources of DM and ME were obtained from a 100 CRM maize hybrid plus grazed oats (11.8 c/ kg; 1.12 c/MJ), while the cheapest ME source among cut winter forages was a 113 CRM maize hybrid + triticale (1.18 c/MJ). Reliable annual silage production of 30 t DM/ha and 330 GJ ME/ha (or 3000 kg MS/ha) is possible using a late maturing maize hybrid combined with a winter forage crop such as triticale, although the low feed value of the triticale may limit its use as feed for milking cows. Keywords: Italian ryegrass, oats, maize silage, supplements, triticale, winter forage crops

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1700
Author(s):  
John W. Piltz ◽  
Stephen G. Morris ◽  
Leslie A. Weston

Barley grass (Hordeum spp.) is a short-lived annual weed which competes with preferred crop and pasture species and frequently contaminates wool and carcasses, and irritates the ears, eyes and noses of sheep. Barley grass, annual ryegrass (Lolium rigidum L.) and wild radish (Raphanus raphanistrum L.) are annual winter crop weeds which reduce grain yield through competition. In three consecutive years (2015 to 2017) cereal, legume and cereal/legume forage crops were grown and harvested in early October, late October or early November consistent with an early silage harvest (ES), late silage harvest (LS) or hay cut (H). A spring wheat cultivar was sown over each site in the following year (2016 to 2018). Weed density was recorded during the forage crop and wheat phases. Forage crop weed populations varied between years. Late paddock preparation for sowing in 2015 effectively eradicated barley grass from all forage crops; however, the competitiveness of legume and cereal/legume crops against annual ryegrass was reduced. In contrast, legume and cereal/legume mixtures tended to have higher barley grass densities than cereal crops in 2016 and 2017, when paddock preparation was earlier. Cutting in October 2015 reduced annual ryegrass and wild radish populations in 2016 wheat by 92.0% and 86.7%, respectively. In 2017 and 2018, regrowth and subsequent seed set following cutting appeared to negate cutting time effects for all crop and crop/legume combinations. Late paddock preparation, an early October forage harvest and effective regrowth control provided the best opportunity for barley grass, annual ryegrass and wild radish control in a single year.


1977 ◽  
Vol 25 (3) ◽  
pp. 135-150
Author(s):  
H. van Arkel

A UNDP/FAO Development Project has initiated and aided the establishment of a commercial beef cattle finishing sector in Kenya. The feeding systems developed utilize surplus cattle from rural areas which are fed on rations based on maize silage. The project has now initiated a search for forage crops suitable for cultivation under highland conditions, but more drought-resistant than the presently used maize. It appeared in a trial at 3 sites at 1850-1920 m alt. that new introductions of cold-tolerant sorghum cv. from the high-alt. areas of Uganda and Ethiopia produced consistently good yields which were comparable to, or better than, maize. Some of the high-alt. sorghum cv. were completely free from diseases which are typically encountered when 'lowland' cv. are grown above 1600 m in Kenya. In contrast with maize and sunflower, the new sorghum introductions were highly resistant to lodging. Correlation analysis showed that the unwanted tallness of crops is highly associated with the yield of maize and sunflower, whereas with cold-tolerant sorghum cv. there is scope for selection or breeding of high-yielding material which is shorter. The single highest-yielding entry for cold-tolerant sorghum, sunflower and maize produced 30.5, 29.5 and 26.6 t DM/ha, resp. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110244
Author(s):  
Fuyang Tian ◽  
Kelai Xia ◽  
Jin Wang ◽  
Zhanhua Song ◽  
Yinfa Yan ◽  
...  

The harvesting straw feed crops (silage corn, alfalfa, herbaceous mulberry, etc.) was tedious, high-labor-cost, and large-nutrient-loss. A self-propelled straw forage crop harvester, which could realize the integration of cutting, flattening and modulating, chopping, and throwing straw forage crops, was designed. The cutting angle could freely be adjusted between 0° and 8°. The max rotation speed of the flattening roller could reach 590 r/min and could be adjusted consecutively by the hydraulic control device. To verify the performance of this machine, several harvesting experiments of alfalfa, silage corn, and herbaceous mulberry with different moisture, were carried out on this machine. During the experiment, the average working speed of the machine was 1.6 m/s, the cutting height was 40–80 mm, and the flattening rate was 97.14%. It is determined that the suitable cutting speed for harvesting alfalfa is 2131 r/min; the suitable cutting speed for harvesting silage corn is 836 r/min; the suitable cutting speed for harvesting herb mulberry is 1045 r/min. The design of the machine can not only improve labor productivity and reduce the nutrient loss of forage crop but also support the silage harvesting machinery and equipment for forage crop.


2016 ◽  
Vol 56 (3) ◽  
pp. 451 ◽  
Author(s):  
Xuezhao Sun ◽  
David Pacheco ◽  
Dongwen Luo

A series of experiments was conducted in New Zealand to evaluate the potential of forage brassicas for mitigation of enteric methane emissions. Experiments involved sheep and cattle fed winter and summer varieties of brassica forage crops. In the sheep-feeding trials, it was demonstrated that several species of forage brassicas can result, to a varying degree, in a lower methane yield (g methane per kg of DM intake) than does ryegrass pasture. Pure forage rape fed as a winter crop resulted in 37% lower methane yields than did pasture. Increasing the proportion of forage rape in the diet of sheep fed pasture linearly decreased methane yield. Feeding forage rape to cattle also resulted in 44% lower methane yield than did feeding pasture. In conclusion, reductions in methane emission are achievable by feeding forage brassicas, especially winter forage rape, to sheep and cattle. Investigating other aspects of these crops is warranted to establish their value as a viable mitigation tool in pastoral farming.


2021 ◽  
Vol 13 (6) ◽  
pp. 3545
Author(s):  
Shital Poudyal ◽  
Valtcho D. Zheljazkov

The extraction of coalbed methane produces a significant amount of coalbed methane co-produced water (CBMW). Coalbed methane co-produced water is often characterized by high levels of pH, total dissolved solids (TDS), sodium (Na) and bicarbonate (HCO−3) and if used for irrigation without treatment, it may be detrimental to the surrounding soil, plants and environment. CBMW ideally should be disposed of by reinjection into the ground, but because of the significant cost associated, CBMW is commonly discharged onto soil or water surfaces. This study was conducted to elucidate the effect of the CBMW (with TDS value of <1500 ppm) at various blending ratios with fresh water on the yield and quality of representative forage crops [i.e., oat (Avena sativa) and alfalfa (Medicago sativa)]. Various blends of CBMW with fresh water reduced fresh and dry weight of alfalfa by 21.5–32% and 13–30%, respectively and fresh and dry weight of oat by 0–17% and 0–14%, respectively. Irrigation with various blends of CBMW and fresh water increased soil pH and soil sodium adsorption ratio. However, forage quality parameters such as crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), total digestible nutrients (TDN) and relative feed value (RFV) of both forage crops remained unaffected.


Author(s):  
L.C.Smith T.Orchiston R.M. Monaghan

Evidence suggests that the wintering of stock on forage crops is a significant contributor to N losses from livestock farming. Losses are likely to be exacerbated if crops are grown on shallow free-draining soils types and grazed by dairy cattle. A three-year trial (December 2008 - November 2011) was conducted in northern Southland on a soil classified as having severe vulnerability for nutrient leaching to groundwater. Porous ceramic cups were installed under a brassica crop which was grazed by dairy cows in June each year and the leachate collected regularly for N analysis. The treatments evaluated were with and without a single application of DCD applied at the time of crop grazing. Concentrations of nitrate-N in drainage water ranged from 40 mg/L in May 2011. Concentrations of dissolved organic N (DON) also increased from a low initial value (


Author(s):  
А.А. Анисимов ◽  
П.И. Комахин ◽  
В.Н. Золотарев

Важнейшей проблемой продовольственной безопасности страны является уровень обеспеченности населения молочными продуктами. В связи с этим большое значение имеет опыт работы передовых хозяйств такого профиля в определённых почвенно-климатических и природно-экологических условиях. ФГБУ «Опытная станция «Пойма» является одним из наиболее эффективных хозяйств в Московской области по производству молока. Общая площадь сельскохозяйственных угодий составляет 6135 га, из них 2000 га пашни. В структуре посевных площадей 95% и более занимают кормовые культуры, в том числе 12–14% — однолетние травы, 68–70% — многолетние травы и природные кормовые угодья, 15–16% — кукуруза на силос. Основное производство кормов сосредоточено на высокоплодородных пойменных землях, на долю которых приходится 84% кормовых угодий. В статье изложены результаты системного применения достижений науки и передового опыта по стабильному производству высококачественных объёмистых кормов. Проведён анализ состояния кормопроизводства и животноводства хозяйства с 1982 по 2020 год, освещены научные подходы к увеличению производства кормов и животноводческой продукции. Системное освоение передовых научных разработок по созданию высокопродуктивных кормовых посевов и стабильному производству высококачественных объёмистых кормов, их рациональному хранению и использованию, техническая модернизация позволили увеличить среднегодовой надой на корову с 4079 до 9708 кг, или более чем в 2,3 раза, при одновременном снижении расхода кормов на 1 кг молока с 1,37 до 0,90 корм. ед. при повышении рентабельности с 16 до 28%. Food safety of the country is highly affected by the availability of milk products. Therefore, the experience of leading farms is of great importance under certain environmental conditions. The Research Station “Poyma” is one of the leading milk producers in the Moscow region. Its fields occupy around 6135 ha. The proportion of forage crops amounts to 95% including 12–14% of annual grasses, 68–70% of perennial grasses and natural forage lands as well as 15–16% of maize for silage production. 84% of the total cultivation area are high-fertile floodlands. This article focuses on the application of the latest scientific findings and advanced experience for stable production of high-quality bulk fodder. The efficiency of forage production and Animal Husbandry was analyzed in the period from 1982 to 2020. The methods and practices were reviewed to optimize forage and animal product resources. Average annual milk yield was improved from 4079 to 9708 kg per cow, or by more than 2.3 times due to the introduction of the latest findings into the production process including the cultivation of high-productive forage crops, stabilization of bulk fodder supplies, feed effective storage and use. Forage consumption dropped from 1.37 to 0.90 feed units for the production of 1 kg of milk, payback increased from 16 to 28%.


Sign in / Sign up

Export Citation Format

Share Document