Use of Phytochemicals: A Promising and Eco-Friendly Approach for the Management of Mosquito Vector Populations

Author(s):  
Biswajita Pradhan ◽  
Chhandashree Behera ◽  
Rabindra Nayak ◽  
Mrutyunjay Jena
Keyword(s):  
2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Sardjito Eko Windarso dkk

The increasing of malaria cases in recent years at Kecamatan Kalibawang has been suspected correspond with the conversion of farming land-use which initiated in 1993. Four years after the natural vegetation in this area were changed become cocoa and coffee commercial farming estates, the number of malaria cases in 1997 rose more than six times, and in 2000 it reached 6085. This study were aimed to observe whether there were any differences in density and diversity of Anopheles as malaria vector between the cocoa and mix farming during dry and rainy seasons. The results of the study are useful for considering the appropriate methods, times and places for mosquito vector controlling. The study activities comprised of collecting Anopheles as well as identifying the species to determine the density and diversity of the malaria vector. Both activities were held four weeks in dry season and four weeks in rainy season. The mea-surement of physical factors such as temperature, humidity and rainfall were also conducted to support the study results. Four dusuns which meet the criteria and had the highest malaria cases were selected as study location. Descriptively, the results shows that the number of collected Anopheles in cocoa farming were higher compared with those in mix horticultural farming; and the number of Anopheles species identifi ed in cocoa farming were also more varied than those in the mix horticultural farming.Key words: bionomik vektor malaria, anopheles,


2020 ◽  
Vol 10 (1) ◽  
pp. 67-77
Author(s):  
Amos Watentena ◽  
Ikem Chris Okoye ◽  
Ikechukwu Eugene Onah ◽  
Onwude Cosmas Ogbonnaya ◽  
Emmanuel Ogudu

Mosquitoes of Aedes species are vectors of several arboviral diseases which continue to be a major public health problem in Nigeria. This study among other things, morphologically identified Aedes mosquitoes collected from Nsukka LGA and used an allele specific PCR amplification for discrimination of dengue vectors. Larval sampling, BG-sentinel traps and modified human landing catches were used for mosquito sampling in two selected autonomous communities of Nsukka LGA (Nsukka and Obimo). A total of 124 Aedes mosquitoes consisting of five (5) different species were collected from April to June, 2019 in a cross-sectional study that covered 126 households, under 76 distinct geographical coordinates. Larvae was mainly collected from plastic containers 73% (n=224), metallic containers 14% (n=43), earthen pots 9% (n=29) and used car tyres 3% (n=9), reared to adult stage 69.35% (n=86), and all mosquitoes were identified using standard morphological keys. Five (5) Aedes mosquito species were captured; Aedes aegypti 83(66.94%), Aedes albopictus 33(26.61%), Aedes simpsoni (4.48%), Aedes luteocephalus (≤1%) and Aedes vittatus (≤1%). Nsukka autonomous community had higher species diversity than Obimo. Allele specific amplification confirmed dengue vectors, Aedes aegypti and Aedes albopictus species on a 2% agarose gel. Since the most recent re-emergence of arboviral diseases is closely associated with Aedes species, findings of this study, therefore, give further evidence about the presence of potential arboviral vectors in Nigeria and describe the role of a simple PCR in discriminating some. Further entomological studies should integrate PCR assays in mosquito vector surveillance.


2004 ◽  
Author(s):  
Milton E. Teske ◽  
Harold W. Thistle ◽  
Mark Latham ◽  
William H. Reynolds

Author(s):  
Rebeca de Jesús Crespo ◽  
Madison Harrison ◽  
Rachel Rogers ◽  
Randy Vaeth

We investigated the role of socio-economic factors in the proliferation of mosquito vectors in two adjacent but socio-economically contrasting neighborhoods in Baton Rouge, LA, USA. We surveyed mosquito larvae habitat, mosquito larvae, and adult mosquitoes during the summer of 2020. We also evaluated the number of requests for mosquito abatement services in the years preceding the study for each area. While we did not find differences in terms of the most abundant species, Culex quinquefasicatus (F1,30 = 0.329, p = 0.57), we did find a higher abundance of mosquito habitats, particularly discarded tires, as well as larvae (z = 13.83, p < 0.001) and adults (F1,30 = 4.207, p = 0.049) of the species Aedes albopictus in the low-income neighborhood. In contrast, mosquito abatement requests were significantly higher in the high socio-economic neighborhood (z = −8.561, p < 0.001). This study shows how factors such as adjudicated properties, discarded tires and pest abatement requests can influence the abundance of mosquito vectors, disproportionately affecting low-income groups. This study also highlights how Aedes spp. may be better indicators than Culex spp. of socio-economic differences between nearby neighborhoods, due to their short flight range and habitat preferences, and this should be considered in future studies attempting to detect such disparities in the future.


2021 ◽  
Vol 7 (6) ◽  
pp. eabe3362 ◽  
Author(s):  
Thiago Luiz Alves e Silva ◽  
Andrea Radtke ◽  
Amanda Balaban ◽  
Tales Vicari Pascini ◽  
Zarna Rajeshkumar Pala ◽  
...  

Plasmodium parasites must migrate across proteinaceous matrices to infect the mosquito and vertebrate hosts. Plasmin, a mammalian serine protease, degrades extracellular matrix proteins allowing cell migration through tissues. We report that Plasmodium gametes recruit human plasminogen to their surface where it is processed into plasmin by corecruited plasminogen activators. Inhibition of plasminogen activation arrests parasite development early during sexual reproduction, before ookinete formation. We show that increased fibrinogen and fibrin in the blood bolus, which are natural substrates of plasmin, inversely correlate with parasite infectivity of the mosquito. Furthermore, we show that sporozoites, the parasite form transmitted by the mosquito to humans, also bind plasminogen and plasminogen activators on their surface, where plasminogen is activated into plasmin. Surface-bound plasmin promotes sporozoite transmission by facilitating parasite migration across the extracellular matrices of the dermis and of the liver. The fibrinolytic system is a potential target to hamper Plasmodium transmission.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brian J. Johnson ◽  
Amy Robbins ◽  
Narayan Gyawali ◽  
Oselyne Ong ◽  
Joanne Loader ◽  
...  

AbstractKoala populations in many areas of Australia have declined sharply in response to habitat loss, disease and the effects of climate change. Koalas may face further morbidity from endemic mosquito-borne viruses, but the impact of such viruses is currently unknown. Few seroprevalence studies in the wild exist and little is known of the determinants of exposure. Here, we exploited a large, spatially and temporally explicit koala survey to define the intensity of Ross River Virus (RRV) exposure in koalas residing in urban coastal environments in southeast Queensland, Australia. We demonstrate that RRV exposure in koalas is much higher (> 80%) than reported in other sero-surveys and that exposure is uniform across the urban coastal landscape. Uniformity in exposure is related to the presence of the major RRV mosquito vector, Culex annulirostris, and similarities in animal movement, tree use, and age-dependent increases in exposure risk. Elevated exposure ultimately appears to result from the confinement of remaining coastal koala habitat to the edges of permanent wetlands unsuitable for urban development and which produce large numbers of competent mosquito vectors. The results further illustrate that koalas and other RRV-susceptible vertebrates may serve as useful sentinels of human urban exposure in endemic areas.


Author(s):  
Yuan Fang ◽  
Ernest Tambo ◽  
Jing-Bo Xue ◽  
Yi Zhang ◽  
Xiao-Nong Zhou ◽  
...  

Abstract Gene mutations on target sites can be a valuable indicator of the status of insecticide resistance. Jeddah, a global commercial and major port-of-entry city, is bearing the brunt of dengue disease burden in Saudi Arabia. In the current study, six genotypes of three codon combinations (989, 1016, and 1534) were observed on voltage-gated sodium channel (VGSC) gene in Jeddah’s Aedes aegypti population, with PGF/PGC as the dominant one. Two types of introns between exon 20 and 21 on VGSC have been identified for the first time in Ae. aegypti in Saudi Arabia. Statistical and phylogenetic analyses showed that the intron type was significantly associated with the 1016 allele and may reflect the history of insecticide treatment in different continents. In addition, fixation of the L1014F allele on VGSC and G119S on acetylcholinesterase 1 gene was detected in local Culex quinquefasciatus populations, with frequencies of 95.24 and 100%, respectively. To the best of our knowledge, this is the first report of resistant-associated mutations in field-caught Cx. quinquefasciatus in Saudi Arabia. The high prevalence of insecticide resistance gene mutations in local primary mosquito vector species highlights the urgent need to carry out comprehensive insecticide resistance surveillance in Saudi Arabia.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
José L Ruiz ◽  
Lisa C Ranford-Cartwright ◽  
Elena Gómez-Díaz

Abstract Anopheles gambiae mosquitoes are primary human malaria vectors, but we know very little about their mechanisms of transcriptional regulation. We profiled chromatin accessibility by the assay for transposase-accessible chromatin by sequencing (ATAC-seq) in laboratory-reared A. gambiae mosquitoes experimentally infected with the human malaria parasite Plasmodium falciparum. By integrating ATAC-seq, RNA-seq and ChIP-seq data, we showed a positive correlation between accessibility at promoters and introns, gene expression and active histone marks. By comparing expression and chromatin structure patterns in different tissues, we were able to infer cis-regulatory elements controlling tissue-specific gene expression and to predict the in vivo binding sites of relevant transcription factors. The ATAC-seq assay also allowed the precise mapping of active regulatory regions, including novel transcription start sites and enhancers that were annotated to mosquito immune-related genes. Not only is this study important for advancing our understanding of mechanisms of transcriptional regulation in the mosquito vector of human malaria, but the information we produced also has great potential for developing new mosquito-control and anti-malaria strategies.


Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Erik Neff ◽  
Christopher C. Evans ◽  
Pablo D. Jimenez Castro ◽  
Ray M. Kaplan ◽  
Guha Dharmarajan

Parasite drug resistance presents a major obstacle to controlling and eliminating vector-borne diseases affecting humans and animals. While vector-borne disease dynamics are affected by factors related to parasite, vertebrate host and vector, research on drug resistance in filarial parasites has primarily focused on the parasite and vertebrate host, rather than the mosquito. However, we expect that the physiological costs associated with drug resistance would reduce the fitness of drug-resistant vs. drug-susceptible parasites in the mosquito wherein parasites are not exposed to drugs. Here we test this hypothesis using four isolates of the dog heartworm (Dirofilaria immitis)—two drug susceptible and two drug resistant—and two vectors—the yellow fever mosquito (Aedes aegypti) and the Asian tiger mosquito (Ae. albopictus)—as our model system. Our data indicated that while vector species had a significant effect on vectorial capacity, there was no significant difference in the vectorial capacity of mosquitoes infected with drug-resistant vs. drug-susceptible parasites. Consequently, contrary to expectations, our data indicate that drug resistance in D. immitis does not appear to reduce the transmission efficiency of these parasites, and thus the spread of drug-resistant parasites in the vertebrate population is unlikely to be mitigated by reduced fitness in the mosquito vector.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2590
Author(s):  
David S. Guttery ◽  
Abhinay Ramaprasad ◽  
David J. P. Ferguson ◽  
Mohammad Zeeshan ◽  
Rajan Pandey ◽  
...  

The meiotic recombination 11 protein (MRE11) plays a key role in DNA damage response and maintenance of genome stability. However, little is known about its function during development of the malaria parasite Plasmodium. Here, we present a functional, ultrastructural and transcriptomic analysis of Plasmodium parasites lacking MRE11 during its life cycle in both mammalian and mosquito vector hosts. Genetic disruption of Plasmodium berghei mre11 (PbMRE11) results in significant retardation of oocyst development in the mosquito midgut associated with cytoplasmic and nuclear degeneration, along with concomitant ablation of sporogony and subsequent parasite transmission. Further, absence of PbMRE11 results in significant transcriptional downregulation of genes involved in key interconnected biological processes that are fundamental to all eukaryotic life including ribonucleoprotein biogenesis, spliceosome function and iron–sulfur cluster assembly. Overall, our study provides a comprehensive functional analysis of MRE11′s role in Plasmodium development during the mosquito stages and offers a potential target for therapeutic intervention during malaria parasite transmission.


Sign in / Sign up

Export Citation Format

Share Document