Regulated and Unregulated Emissions from Methanol Fuelled Engines

Author(s):  
Hardikk Valera ◽  
Jakub Čedík ◽  
Martin Pexa ◽  
Avinash Kumar Agarwal
Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 478
Author(s):  
Hong Zhao ◽  
Liang Mu ◽  
Yan Li ◽  
Junzheng Qiu ◽  
Chuanlong Sun ◽  
...  

Emissions from motor vehicles have gained the attention of government agencies. To alleviate air pollution and reduce the petroleum demand from vehicles in China, the policy of “oil to gas” was vigorously carried out. Qingdao began to promote the use of natural gas vehicles (NGVs) in 2003. By the end of 2016, there were 9460 natural gas (NG) taxis in Qingdao, which accounted for 80% of the total taxis. An understanding of policy implementation for emission reductions is required. Experiments to obtain the taxi driving conditions and local parameters were investigated and an international vehicle emissions (IVE) localization model was established. Combined with vehicle mass analysis system (VMAS) experiments, the IVE localization model was amended and included the taxi pollutant emission factors. The result indicates that annual total carbon monoxide (CO) emissions from actual taxis are 6411.87 t, carbureted hydrogen (HC) emissions are 124.85 t, nitrogen oxide (NOx) emissions are 1397.44 t and particulate matter (PM) emissions are 8.9 t. When the taxis are running on pure natural gas, the annual emissions of CO, HC, NOx and PM are 4942.3 t, 48.15 t, 1496.01 t and 5.13 t, respectively. Unregulated emissions of annual total formaldehydes, benzene, acetaldehyde, 1,3-butadience emissions from an actual taxi are 65.99 t, 4.68 t, 1.04 t and 8.83 t. When the taxi is running on pure natural gas, the above unregulated emissions are 12.11 t, 1.27 t, 1.5 t and 0.02 t, respectively.


2015 ◽  
Vol 29 (Supplement 1) ◽  
pp. 1530009
Author(s):  
Chunhui Zhang ◽  
Peng Geng ◽  
Erming Cao ◽  
Lijiang Wei

A number of measurements have been provided to detect formaldehyde in the atmosphere, but there are no clear unified standards in engine exhaust. Nowadays, formaldehyde, an unregulated emission from methanol engine, has been attracting increasing attention by researchers. This paper presents the detection techniques for formaldehyde emitted from the engines applied in recent market, introducing the approaches in terms of unregulated emission tests of formaldehyde, which involved gas chromatography, liquid chromatography, chromatography-mass spectrometry, chromatography-spectrum, Fourier infrared spectroscopy and spectrophotometry. The author also introduces the comparison regarding to the advantages of the existing detection techniques based on the principle, to compare with engine exhaust sampling method, the treatment in advance of detection, obtaining approaches accessing to the qualitative and quantitative analysis of chromatograms or spectra. The accuratest result obtained was chromatography though it cannot be used continuously. It also can be utilized to develop high requirements of emissions and other regulations. Fourier infrared spectroscopy has the advantage of continuous detection for a variety of unregulated emissions and can be applied to the bench in variable condition. However, its accuracy is not as good as chromatography. As the conclusion, a detection technique is chosen based on different requirements.


2002 ◽  
Vol 125 (1) ◽  
pp. 344-350 ◽  
Author(s):  
S. G. Poulopoulos ◽  
C. J. Philippopoulos

In the present work, the effect of adding ethanol or methyl tertiary butyl ether (MTBE) to gasoline on the regulated and unregulated emissions from an internal combustion engine with a typical three-way catalyst was studied. The addition of ethanol to fuel (10% w/w) increased both the research octane number and the Reid vapor pressure of the fuel, whereas adding 11% w/w MTBE caused an increase only in the research octane number of the fuel. When the fuel contained MTBE, less hydrocarbons, carbon monoxide, and acetaldehyde were emitted in the tailpipe. The increased emissions of acetaldehyde and ethanol were the main disadvantages of using ethanol.


2020 ◽  
Vol 10 (20) ◽  
pp. 7048
Author(s):  
Alarico Macor ◽  
Alberto Benato

The aim of the work is to evaluate the damage to human health arising from emissions of in-operation internal combustion engines fed by biogas. The need of including also unregulated emissions like polycyclic aromatic hydrocarbons (PAHs), aldehydes and dioxins and furans is twofold: (i) to cover the lack in biogas engine emissions measurements and (ii) to complete the picture on biogas harmfulness to human health by identifying the substances with the highest impact. To this purpose, an experimental campaign is conducted on six biogas engines and one fed by natural gas all characterised by an electric power of 999 kWel. Collected data are used to perform an impact analysis on human health combining the Health Impact Assessment and the Risk Assessment. Measurements show that PAHs, aldehydes and diossin and furans are almost always below the detection limit, in both biogas and natural gas exhausts. The carcinogenic risk analysis of PAHs for the two fuels established their substantial equivalence. The analysis of equivalent toxicity of dioxins and furans reveals that biogas is, on average, 10 times more toxic than natural gas. Among regulated emissions, NOx in the biogas engines exhausts are three times higher than those of natural gas. They are the main contributors to human health damage, with approximately 90% of the total. SOx ranks second and accounts for about 6% of the total damage. Therefore, (i) the contribution to human health damage of unregulated emissions is limited compared to the damage from unregulated emissions, (ii) the damage per unit of electricity of biogas engines exhausts is about three times higher than that of natural gas and it is directly linked to NOx, (iii) obtaining a good estimation of the human health damage from both biogas and natural gas engines emissions is enough of a reason to consider NOx and SOx.


2019 ◽  
Vol 12 (7) ◽  
pp. 855-864 ◽  
Author(s):  
Michal Puškár ◽  
Andrej Jahnátek ◽  
Ivan Kuric ◽  
Jaroslava Kádárová ◽  
Melichar Kopas ◽  
...  

Fuel ◽  
2020 ◽  
Vol 267 ◽  
pp. 117256 ◽  
Author(s):  
Sheikh Muhammad Farhan ◽  
Wang Pan ◽  
Wu Yan ◽  
Yi Jing ◽  
Lei Lili

Sign in / Sign up

Export Citation Format

Share Document