The effects of mercaptoethanol-formaldehyde on tissue fixation and protein retention

1996 ◽  
Vol 28 (5) ◽  
pp. 375-383 ◽  
Author(s):  
B. Durgun-Yücel ◽  
D. Hopwood ◽  
A. H. Yücel
Author(s):  
Jorge Pecci Saavedra ◽  
Mark Connaughton ◽  
Juan José López ◽  
Alicia Brusco

The use of antibodies as labels for the localization of specific molecules in the nervous systan has been extensively applied in recent years. Both monoand polyclonal antibodies or antisera have been employed. The knowledge of the organization of neuronal connectivities, gliovascular relationships, glioneuronal relationships and other features of nerve tissue has greatly increased.A number of areas of the nervous systan have been analyzed in our laboratory, including the nuclei of the raphe system, the reticular formation, interpeduncular nucleus, substantia nigra, caudate nucleus, putamen, pallidum, spinal cord, pineal gland and others.From a technical point of view, a number of variables needed to be taken into account in order to obtain reliable and reproducible results. The design of the optimal conditions of tissue fixation, embedding, sectioning, dilution of antibodies, and adaptation of Sternberger PAP technique were sane of the parameters taken into account to optimize the results. It is critical that each step of the technique be defined for each particular case.


Author(s):  
Anthony S-Y Leong ◽  
David W Gove

Microwaves (MW) are electromagnetic waves which are commonly generated at a frequency of 2.45 GHz. When dipolar molecules such as water, the polar side chains of proteins and other molecules with an uneven distribution of electrical charge are exposed to such non-ionizing radiation, they oscillate through 180° at a rate of 2,450 million cycles/s. This rapid kinetic movement results in accelerated chemical reactions and produces instantaneous heat. MWs have recently been applied to a wide range of procedures for light microscopy. MWs generated by domestic ovens have been used as a primary method of tissue fixation, it has been applied to the various stages of tissue processing as well as to a wide variety of staining procedures. This use of MWs has not only resulted in drastic reductions in the time required for tissue fixation, processing and staining, but have also produced better cytologic images in cryostat sections, and more importantly, have resulted in better preservation of cellular antigens.


2021 ◽  
Author(s):  
Cristiana Leonor da Silva Carneiro ◽  
Cidimar Estevam Assis ◽  
André Luiz Souza Modesto ◽  
João Felipe Ribeiro Maciel ◽  
Daniel Abreu Vasconcelos Campelo ◽  
...  

Author(s):  
Jana Steger ◽  
Isabella Patzke ◽  
Maximilian Berlet ◽  
Stefanie Ficht ◽  
Markus Eblenkamp ◽  
...  

Abstract Purpose The introduction of novel endoscopic instruments is essential to reduce trauma in visceral surgery. However, endoscopic device development is hampered by challenges in respecting the dimensional restrictions, due to the narrow access route, and by achieving adequate force transmission. As the overall goal of our research is the development of a patient adaptable, endoscopic anastomosis manipulator, biomechanical and size-related characterization of gastrointestinal organs are needed to determine technical requirements and thresholds to define functional design and load-compatible dimensioning of devices. Methods We built an experimental setup to measure colon tissue compression piercing forces. We tested 54 parameter sets, including variations of three tissue fixation configurations, three piercing body configurations (four, eight, twelve spikes) and insertion trajectories of constant velocities (5 mms−1, 10 mms−1,15 mms−1) and constant accelerations (5 mms−2, 10 mms−2, 15 mms−2) each in 5 samples. Furthermore, anatomical parameters (lumen diameter, tissue thickness) were recorded. Results There was no statistically significant difference in insertion forces neither between the trajectory groups, nor for variation of tissue fixation configurations. However, we observed a statistically significant increase in insertion forces for increasing number of spikes. The maximum mean peak forces for four, eight and twelve spikes were 6.4 ± 1.5 N, 13.6 ± 1.4 N and 21.7 ± 5.8 N, respectively. The 5th percentile of specimen lumen diameters and pierced tissue thickness were 24.1 mm and 2.8 mm, and the 95th percentiles 40.1 mm and 4.8 mm, respectively. Conclusion The setup enabled reliable biomechanical characterization of colon material, on the base of which design specifications for an endoscopic anastomosis device were derived. The axial implant closure unit must enable axial force transmission of at least 28 N (22 ± 6 N). Implant and applicator diameters must cover a range between 24 and 40 mm, and the implant gap, compressing anastomosed tissue, between 2 and 5 mm.


Sign in / Sign up

Export Citation Format

Share Document