Relationship of mycorrhizal growth enhancement and plant growth with soil water and texture

1986 ◽  
Vol 94 (3) ◽  
pp. 439-443 ◽  
Author(s):  
S. Dakessian ◽  
M. S. Brown ◽  
G. J. Bethlenfalvay
2008 ◽  
Vol 54 (10) ◽  
pp. 861-867 ◽  
Author(s):  
Kanchalee Jetiyanon ◽  
Sakchai Wittaya-Areekul ◽  
Pinyupa Plianbangchang

The plant growth-promoting rhizobacterium Bacillus cereus RS87 was previously reported to promote plant growth in various crops in both greenhouse and field trials. To apply as a plant growth promoting agent with practical use, it is essential to ease the burden of routine preparation of a fresh suspension of strain RS87 in laboratory. The objectives of this study were to investigate the feasibility of film-coating seeds with B. cereus RS87 spores for early plant growth enhancement and to reveal the indoleacetic acid (IAA) production released from strain RS87. The experiment consisted of the following 5 treatments: nontreated seeds, water-soaked seeds, film-coated seeds, seeds soaked with vegetative cells of strain RS87, and film-coated seeds with strain RS87 spores. Three experiments were conducted separately to assess seed emergence, root length, and plant height. Results showed that both vegetative cells and spores of strain RS87 significantly promoted (P ≤ 0.05) seed emergence, root length and plant height over the control treatments. The strain RS87 also produced IAA. In conclusion, the film coating of seeds with spores of B. cereus RS87 demonstrated early plant growth enhancement as well as seeds using their vegetative cells. IAA released from strain RS87 would be one of the mechanisms for plant growth enhancement.


2021 ◽  
Vol 37 (2) ◽  
pp. 3-19
Author(s):  
A.A. Gagarina

The present review describes the concept of probiotics for plants and analyzes the prospects for using actinomycetes as producers of these drugs. The minimum requirements for plant probiotic microorganisms are proposed, similar to those for human probiotic microorganisms. These are utility, efficiency and safety for plants, as well as mandatory isolation from plant samples. It is noted that these requirements are usually met by endophytic and rhizosphere microorganisms that stimulate plant growth and provide them with protection from phytopathogens. Evidence is given for the possibility of attributing actinomycetes to probiotic plant bacteria, due to the close relationship of these microorganisms with plants, their wide distribution in populations of endophytic and rhizosphere microorganisms, and the presence of phytoregulatory activity. The review provides examples of genera and species of actinomycetes that are promising producers of probiotics for agronomically important crops. The most studied and commercialized of them are representatives of the Streptomyces genus. The current state, prospects and problems in commercialization of probiotics based on actinomycetes are discussed. probiotic microorganisms of plants, associative actinomycetes, endophytes, rhizosphere, biological preparations


Agropedology ◽  
2019 ◽  
Vol 27 (2) ◽  
Author(s):  
Yagani Sinha ◽  
◽  
Rajeev Srivastava ◽  
Jagdish Prasad ◽  
M.S.S. Nagaraju ◽  
...  

Soil salinity is a major environmental hazard which adversely affects plant growth, crop production, soil and water quality and agricultural productivity.Soil salinity is determined by measuring electrical conductivity of soil water suspension. Though saturation paste ECe closely relates with plant growth and development but its measurement is laborious and time-consuming specifically in clayey soils when large number of samples are analyzed. Measurement of EC1:2 (1:2 Soil: water suspension) is very quick and economical. Therefore, a need is felt to develop a relationship between ECe and EC1:2so that the values of EC1:2 could easily be related to ECe. For this, anexperiment was conducted on four soil series representing swell-shrink soils. Soils were artificially salinized with solutions (salt) of 0.2, 0.5, 1 and 2% of chloride salts (NaCl, CaCl2, MgCl2 and their mixture) and replicated three times. The results indicate that a significant relationship (r=0.96) exists between ECe and soil EC1:2and soil ECe can be reliably predicted from EC1:2 in swell-shrink soils.


Author(s):  
M. M. Hossain ◽  
G. K. M. M. Rahman ◽  
M. A. M. Akanda ◽  
A. R. M. Solaiman ◽  
M. T. Islam ◽  
...  

Soil-plant–microbes relations within the plant rhizosphere are the determinants of plant and soil health, which is important for soil ecological environment for plant-microbe interactions. Plant growth-promoting rhizobacteria (PGPR) are considered to encourage plant growth and development directly or indirectly in soil. PGPR can demonstrate a diversity of characteristics responsible .for influencing plant growth and development. During this study, Twenty four different bacterial isolates were isolated, and detailed morphological, biochemical, and physiological characterizations of those isolates were accomplished. This experiment was performed with the 24 bacterial isolates to see their gram stain test, KOH test, catalase activity, cellulose degradation capability, in dole acetic acid (IAA) production, and phosphate solubilization activities, and also tested for growth within the different arsenic and salt stress conditions and 37°C temperature. Results revealed that among the rhizobacterial isolates, fifteen bacterial isolates were negative and nine was positive in gram reaction, while some were showed high IAA production ability, phosphate solubility capability, and cellulose degradation capacity within the culture media. The isolates were isolated from paddy soils and a few were characterized by a yellow color, flat elevation, and gram-positive, while some were characterized because of the yellowish color with round colony shape, raised elevation, gram-negative, and every one the isolates were positive in catalase production capacity and phosphate solubilization activity which is able to increase the available phosphorus within the soil for plants and also produced indole acetic acid that may use as a hormone to be used in growth enhancement of plants. Hence, these isolates need to be tested further for their effect on arsenic dynamics at the plant rhizosphere, selection of suitable plant species for the bacterial association, bacterial effect on arsenic uptake by plants, and potentials for field applications for sustainable agriculture.


The conservation of water resources through their optimal use is a compulsory for countries with water shortages in the arid and semi-arid regions, and it should be in an environmentally friendly manner to avoid the serious consequences of the use of environmentally harmful substances, the implications of which are currently evident from climate change, pollution of water bodies, soils, etc. Since Egypt is one of those countries suffering from water scarcity and uses about 82.5 percent of its water consumption in agriculture, according to data of the Ministry of Irrigation in 2010, so this research is focusing on the use of new methods to increase the efficiency of irrigation water, to achieve high productivity of agricultural crops with less water use that will certainly help to alleviate or solve the water scarcity issue. The study used a physical based model, to simulate the methods used to increase sand soil properties to ensure larger water retention index. Within this work, soil have been sampled from different areas, to simulate the behavior of arid lands, under different water retention techniques. Soil was exposed to different techniques, as it was mixed with soil additives in different quantities and different types. Physical barriers of cohesive soil and polyethylene sheets were used in addition to studying the effect of mulch on water storage capacity in noncohesive soil. Water retention have been measured using the direct method of determination soil water content by oven drying and the volumetric water content (𝞱v ) with time graphs have been plotted in groups, as well as the cultivated plants have been monitored as to measure the influence on plants growing and irrigation efficiency. And the experiment showed that the use of rice straw (RS) and wheat straw (WS) in the powder condition have a significant effect in increasing in the soil water content and even to the plant growth, the WS obtained 𝞱v values approaching the loam soil at times and slightly less in the case of RS, when the percentage of RC and WS was 30% to the sandy soil volume/volume (v/v). Also the use of mulch of RS showed a noticeable increase in 𝞱v and significant improvement of plant growth to that without mulch. These proven technologies can be used in sandy land targeted for reclamation to reduce water use in agriculture.


Sign in / Sign up

Export Citation Format

Share Document