scholarly journals Subleading corrections to the free energy in a theory with N5/3 scaling

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
James T. Liu ◽  
Yifan Lu

Abstract We numerically investigate the sphere partition function of a Chern-Simons-matter theory with SU(N) gauge group at level k coupled to three adjoint chiral multiplets that is dual to massive IIA theory. Beyond the leading order N5/3 behavior of the free energy, we find numerical evidence for a term of the form (2/9) log N. We conjecture that this term may be universal in theories with N5/3 scaling in the large-N limit with the Chern-Simons level k held fixed.

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
M.Y. Avetisyan ◽  
R.L. Mkrtchyan

Abstract We present a new expression for the partition function of the refined Chern-Simons theory on S3 with an arbitrary gauge group, which is explicitly equal to 1 when the coupling constant is zero. Using this form of the partition function we show that the previously known Krefl-Schwarz representation of the partition function of the refined Chern-Simons theory on S3 can be generalized to all simply laced algebras.For all non-simply laced gauge algebras, we derive similar representations of that partition function, which makes it possible to transform it into a product of multiple sine functions aiming at the further establishment of duality with the refined topological strings.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Junho Hong ◽  
James T. Liu

Abstract We investigate the S3 free energy of $$ \mathcal{N} $$ N = 3 Chern-Simons-matter quiver gauge theories with gauge group U(N)r (r ≥ 2) where the sum of Chern-Simons levels does not vanish, beyond the leading order in the large-N limit. We take two different approaches to explore the sub-leading structures of the free energy. First we evaluate the matrix integral for the partition function in the ’t Hooft limit using a saddle point approximation. Second we use an ideal Fermi-gas model to compute the same partition function, but in the limit of fixed Chern-Simons levels. The resulting expressions for the free energy F = − log Z are then compared in the overlapping parameter regime. The Fermi-gas approach also hints at a universal $$ \frac{1}{6} $$ 1 6 log N correction to the free energy. Since the quiver gauge theories we consider are dual to massive Type IIA theory, we expect the sub-leading correction of the planar free energy in the large ’t Hooft parameter limit to match higher-derivative corrections to the tree-level holographic dual free energy, which have not yet been fully investigated.


1983 ◽  
Vol 48 (10) ◽  
pp. 2888-2892 ◽  
Author(s):  
Vilém Kodýtek

A special free energy function is defined for a solution in the osmotic equilibrium with pure solvent. The partition function of the solution is derived at the McMillan-Mayer level and it is related to this special function in the same manner as the common partition function of the system to its Helmholtz free energy.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Fridrich Valach ◽  
Donald R. Youmans

Abstract We give an interpretation of the holographic correspondence between two-dimensional BF theory on the punctured disk with gauge group PSL(2, ℝ) and Schwarzian quantum mechanics in terms of a Drinfeld-Sokolov reduction. The latter, in turn, is equivalent to the presence of certain edge states imposing a first class constraint on the model. The constrained path integral localizes over exceptional Virasoro coadjoint orbits. The reduced theory is governed by the Schwarzian action functional generating a Hamiltonian S1-action on the orbits. The partition function is given by a sum over topological sectors (corresponding to the exceptional orbits), each of which is computed by a formal Duistermaat-Heckman integral.


Author(s):  
Rodney J. Baxter

We consider the anisotropic Ising model on the triangular lattice with finite boundaries, and use Kaufman’s spinor method to calculate low-temperature series expansions for the partition function to high order. From these, we can obtain 108-term series expansions for the bulk, surface and corner free energies. We extrapolate these to all terms and thereby conjecture the exact results for each. Our results agree with the exactly known bulk-free energy and with Cardy and Peschel’s conformal invariance predictions for the dominant behaviour at criticality. For the isotropic case, they also agree with Vernier and Jacobsen’s conjecture for the 60 ° corners.


2010 ◽  
Vol 25 (02n03) ◽  
pp. 332-350 ◽  
Author(s):  
IGOR R. KLEBANOV

We provide a brief introduction to the ABJM theory, the level kU(N) × U(N) superconformal Chern-Simons matter theory which has been conjectured to describe N coincident M2 -branes. We discuss its dual formulation in terms of M -theory on AdS4 × S7/ℤk and review some of the evidence in favor of the conjecture. We end with a brief discussion of the important role played by the monopole operators.


A partition function for a system of rigid rod-like particles with partial orientation about an axis is derived through the use of a modified lattice model. In the limit of perfect orientation the partition function reduces to the ideal mixing law ; for complete disorientation it corresponds to the polymer mixing law for rigid chains. A general expression is given for the free energy of mixing as a function of the mole numbers, the axis ratio of the solute particles, and a disorientation parameter. This function passes through a minimum followed by a maximum with increase in the disorientation parameter, provided the latter exceeds a critical value which is 2e for the pure solute and which increases with dilution. Assigning this parameter the value which minimizes the free energy, the chemical potentials display discontinuities a t the concentration a t which the minimum first appears. Separation into an isotropic phase and a some what more concentrated anisotropic phase arises because of the discontinuity, in confirmation of the theories of Onsager and Isihara, which treat only the second virial coefficient. Phase separation thus arises as a consequence of particle asymmetry, unassisted by an energy term . Whereas for a large-particle asymmetry both phases in equilibrium are predicted to be fairly dilute when mixing is athermal, a comparatively small positive energy of interaction causes the concentration in the anisotropic phase to increase sharply, while the concentration in the isotropic phase becomes vanishingly small. The theory offers a statistical mechanical basis for interpreting precipitation of rod-like colloidal particles with the formation of fibrillar structures such as are prominent in the fibrous proteins. The asymmetry of tobacco mosaic virus particles (with or without inclusion of their electric double layers) is insufficient alone to explain the well-known phase separation which occurs from their dilute solutions at very low ionic strengths. Higher-order interaction between electric double layers appears to be a major factor in bringing about dilute phase separation for these and other asymmetric colloidal particles bearing large charges, as was pointed out previously by Oster.


1993 ◽  
Vol 08 (06) ◽  
pp. 1139-1152
Author(s):  
M.A. MARTÍN-DELGADO

The discrete model of the real symmetric one-matrix ensemble is analyzed with a cubic interaction. The partition function is found to satisfy a recursion relation that solves the model. The double scaling-limit of the recursion relation leads to a Miura transformation relating the contributions to the free energy coming from oriented and unoriented random surfaces. This transformation is the same kind as found with a quartic interaction.


1997 ◽  
Vol 12 (15) ◽  
pp. 1119-1126 ◽  
Author(s):  
Jorge Alfaro ◽  
Klaus Bering ◽  
Poul H. Damgaard

We show that the constraints on the generating functional have direct BRST-extensions in terms of nilpotent operators Δ that annihilate this generating functional, and which may be of arbitrarily high order. The free energy F in the presence of external sources thus satisfies a "Master Equation" which is described in terms of a tower of higher antibrackets.


2008 ◽  
Vol 23 (35) ◽  
pp. 3015-3022
Author(s):  
K. M. AJITH ◽  
E. HARIKUMAR ◽  
M. SIVAKUMAR

We study the fermionisation of Seiberg–Witten mapped action (to order θ) of the λϕ4 theory coupled minimally with U(1) gauge field governed by Chern–Simons action. Starting from the corresponding partition function we derive nonperturbatively (in coupling constant) the partition function of the spin-1/2 theory following Polyakov spin factor formalism. We find that the dual interacting fermionic theory is nonlocal. This feature also persists in the limit of vanishing self-coupling. In θ → 0 limit, the commutative result is obtained.


Sign in / Sign up

Export Citation Format

Share Document