scholarly journals Human RNase3 immune modulation by catalytic-dependent and independent modes in a macrophage-cell line infection model

Author(s):  
Lu Lu ◽  
RanLei Wei ◽  
Guillem Prats-Ejarque ◽  
Maria Goetz ◽  
Gang Wang ◽  
...  

AbstractThe human RNase3 is a member of the RNaseA superfamily involved in host immunity. RNase3 is expressed by leukocytes and shows broad-spectrum antimicrobial activity. Together with a direct antimicrobial action, RNase3 exhibits immunomodulatory properties. Here, we have analysed the transcriptome of macrophages exposed to the wild-type protein and a catalytic-defective mutant (RNase3-H15A). The analysis of differently expressed genes (DEGs) in treated THP1-derived macrophages highlighted a common pro-inflammatory “core-response” independent of the protein ribonucleolytic activity. Network analysis identified the epidermal growth factor receptor (EGFR) as the main central regulatory protein. Expression of selected DEGs and MAPK phosphorylation were inhibited by an anti-EGFR antibody. Structural analysis suggested that RNase3 activates the EGFR pathway by direct interaction with the receptor. Besides, we identified a subset of DEGs related to the protein ribonucleolytic activity, characteristic of virus infection response. Transcriptome analysis revealed an early pro-inflammatory response, not associated to the protein catalytic activity, followed by a late activation in a ribonucleolytic-dependent manner. Next, we demonstrated that overexpression of macrophage endogenous RNase3 protects the cells against infection by Mycobacterium aurum and the human respiratory syncytial virus. Comparison of cell infection profiles in the presence of Erlotinib, an EGFR inhibitor, revealed that the receptor activation is required for the antibacterial but not for the antiviral protein action. Moreover, the DEGs related and unrelated to the protein catalytic activity are associated to the immune response to bacterial and viral infection, respectively. We conclude that RNase3 modulates the macrophage defence against infection in both catalytic-dependent and independent manners.

2005 ◽  
Vol 73 (9) ◽  
pp. 5743-5753 ◽  
Author(s):  
Christopher S. Bates ◽  
Chadia Toukoki ◽  
Melody N. Neely ◽  
Zehava Eichenbaum

ABSTRACT Group A streptococcus (GAS) is a common pathogen of the human skin and mucosal surfaces capable of producing a variety of diseases. In this study, we investigated regulation of iron uptake in GAS and the role of a putative transcriptional regulator named MtsR (for Mts repressor) with homology to the DtxR family of metal-dependent regulatory proteins. An mtsR mutant was constructed in NZ131 (M49 serotype) and analyzed. Western blot and RNA analysis showed that mtsR inactivation results in constitutive transcription of the sia (streptococcal iron acquisition) operon, which was negatively regulated by iron in the parent strain. A recombinant MtsR with C-terminal His6 tag fusion (rMtsR) was cloned and purified. Electrophoretic mobility gel shift assays demonstrated that rMtsR specifically binds to the sia promoter region in an iron- and manganese-dependent manner. Together, these observations indicate that MtsR directly represses the sia operon during cell growth under conditions of high metal levels. Consistent with deregulation of iron uptake, the mtsR mutant is hypersensitive to streptonigrin and hydrogen peroxide, and 55Fe uptake assays demonstrate that it accumulates 80% ± 22.5% more iron than the wild-type strain during growth in complete medium. Studies with a zebrafish infection model revealed that the mtsR mutant is attenuated for virulence in both the intramuscular and the intraperitoneal routes. In conclusion, MtsR, a new regulatory protein in GAS, controls iron homeostasis and has a role in disease production.


2001 ◽  
Vol 281 (3) ◽  
pp. C1046-C1058 ◽  
Author(s):  
A. Panebra ◽  
S.-X. Ma ◽  
L.-W. Zhai ◽  
X.-T. Wang ◽  
S. G. Rhee ◽  
...  

The actin-regulatory protein villin is tyrosine phosphorylated and associates with phospholipase C-γ1(PLC-γ1) in the brush border of intestinal epithelial cells. To study the mechanism of villin-associated PLC-γ1 activation, we reconstituted in vitro the tyrosine phosphorylation of villin and its association with PLC-γ1. Recombinant villin was phosphorylated in vitro by the nonreceptor tyrosine kinase c-src or by expression in the TKX1 competent cells that carry an inducible tyrosine kinase gene. Using in vitro binding assays, we demonstrated that tyrosine-phosphorylated villin associates with the COOH-terminal Src homology 2 (SH2) domain of PLC-γ1. The catalytic activity of PLC-γ1was inhibited by villin in a dose-dependent manner with half-maximal inhibition at a concentration of 12.4 μM. Villin inhibited PLC-γ1 activity by sequestering the substrate phosphatidylinositol 4,5-bisphosphate (PIP2), since increasing concentrations of PIP2 reversed the inhibitory effects of villin on PLC activity. The inhibition of PLC-γ1 activity by villin was reversed by the tyrosine phosphorylation of villin. Further, we demonstrated that tyrosine phosphorylation of villin abolished villin's ability to associate with PIP2. In conclusion, tyrosine-phosphorylated villin associates with the COOH-terminal SH2 domain of PLC-γ1and activates PLC-γ1 catalytic activity. Villin regulates PLC-γ1 activity by modifying its own ability to bind PIP2. This study provides biochemical proof of the functional relevance of tyrosine phosphorylation of villin and identifies the molecular mechanisms involved in the activation of PLC-γ1 by villin.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Daniel C. Carter ◽  
Brenda Wright ◽  
W. Gray Jerome ◽  
John P. Rose ◽  
Ellen Wilson

Nanoparticles are playing an increasingly powerful role in vaccine development. Here, we report the repurposing of nonstructural proteins 10 and 11 (hereafter NSP10) from the replicase polyprotein 1a (pp1a) of the human SARS coronavirus (severe acute respiratory syndrome) as a novel self-assembling platform for bioengineered nanoparticles for a variety of applications including vaccines. NSP10 represents a 152 amino acid, 17 kD zinc finger transcription/regulatory protein which self-assembles to form a spherical 84 Å diameter nanoparticle with dodecahedral trigonal 32 point symmetry. As a self-assembling nanoparticle, NSP10 possesses numerous advantages in vaccine development and antigen display, including the unusual particle surface disposition of both the N- and C-termini. Each set of N- or C-termini is spatially disposed in a tetrahedral arrangement and positioned at optimal distances from the 3-fold axes (8-10 Å) to nucleate and stabilize the correct folding of complex helical or fibrous trimeric receptors, such as those responsible for viral tropism and cell infection. An application example in the exploratory development of a therapeutic vaccine for idiopathic pulmonary fibrosis (IPF), including preliminary analysis and immunogenic properties, is presented. The use of this system could accelerate the discovery and development of vaccines for a number of human, livestock, and veterinary applications.


1992 ◽  
Vol 282 (3) ◽  
pp. 703-710 ◽  
Author(s):  
J P Hildebrandt ◽  
T J Shuttleworth

The generation of inositol phosphates upon muscarinic-receptor activation was studied in [3H]inositol-loaded exocrine cells from the nasal salt glands of the duck Anas platyrhynchos, and the metabolism of different inositol phosphates in vitro was studied in tissue homogenates, with particular reference to the possible interaction of changes in intracellular [Ca2+] ([Ca2+]i) with the metabolic processes. In intact cells, there was a rapid (within 15 s) generation of Ins(1,4,5)P3 and Ins(1,3,4,5)P4, followed by an accumulation of their breakdown products, Ins(1,3,4)P3 and inositol bis- and monophosphates. Ca(2+)-sensitivity of the Ins(1,4,5)P3 3-kinase was demonstrated in tissue homogenates, with the rate of phosphorylation increasing 2-fold at free Ca2+ concentrations greater than 1 microM. However, addition of calmodulin or the presence of the calmodulin inhibitor W-7 (up to 100 microM) had no effect. 3-Kinase activity increased proportionally with the initial Ins(1,4,5)P3 concentration up to 1 microM, but a 10-fold higher substrate concentration produced only a doubling in the phosphorylation rate. Ins(1,3,4,5)P4 was dephosphorylated to Ins(1,3,4)P3, which accumulated in the homogenate assays as well as in intact cells. Depending on its concentration, Ins(1,3,4)P3 was phosphorylated [in part to Ins(1,3,4,6)P4] or dephosphorylated. To investigate the Ca(2+)-sensitivity of the 3-kinase in intact cells, excess quin2 was used to buffer the receptor-mediated transient changes in [Ca2+]i in [3H]inositol-loaded cells. These experiments revealed that increasing [Ca2+]i from less than 100 to approx. 400 nM (i.e. within the physiological range) has no effect on the partitioning of Ins(1,4,5)P3 metabolism (phosphorylation versus dephosphorylation) and on the accumulation of Ins(1,4,5)P3 and Ins(1,3,4,5)P4. This indicates that activation of the 3-kinase by physiologically relevant Ca2+ concentrations may not play a major role in the generation of Ins(1,3,4,5)P4 signals upon receptor activation in these cells. The latter are mainly achieved by the receptor-mediated increase in Ins(1,4,5)P3 in the cell and its phosphorylation by the 3-kinase in a substrate-concentration-dependent manner.


1991 ◽  
Vol 69 (3) ◽  
pp. 414-418 ◽  
Author(s):  
Bianca B. Ruzicka ◽  
Khem Jhamandas

Previous investigations have shown that the activation of δ-opioid receptors depresses the release of acetylcholine (ACh) in the rat caudate putamen. This finding raised the possibility that the release of ACh is similarly modulated in the globus pallidus, a region containing a distinct population of cholinergic neurons and enriched in enkephalinergic nerve terminals. In the present study the pallidal release of ACh was characterized and the effects of δ-opioid receptor activation on this release were examined. The results show that this release is stimulated by high K+ in a concentration- and Ca2+-dependent manner. D-Pen2,L-Pen5-enkephalin (0.1 – 10 μM), a selective δ-opioid receptor agonist, produced a dose-related inhibition of the 25 mM K+-evoked tritium release. The maximal inhibitory effect, representing a 34% decrease in the K+-induced tritium release, was observed at a concentration of 1 μM. This opioid effect was attenuated by the selective δ-opioid receptor antagonist, ICI 174864 (1 μM). These findings support the role of a δ-opioid receptor in the modulation of ACh release in the rat globus pallidus.Key words: globus pallidus, acetylcholine, enkephalin, release.


2007 ◽  
Vol 189 (23) ◽  
pp. 8417-8429 ◽  
Author(s):  
Jeanette E. Bröms ◽  
Matthew S. Francis ◽  
Åke Forsberg

ABSTRACT Many gram-negative bacterial pathogenicity factors that function beyond the outer membrane are secreted via a contact-dependent type III secretion system. Two types of substrates are predestined for this mode of secretion, namely, antihost effectors that are translocated directly into target cells and the translocators required for targeting of the effectors across the host cell membrane. N-terminal secretion signals are important for recognition of the protein cargo by the type III secretion machinery. Even though such signals are known for several effectors, a consensus signal sequence is not obvious. One of the translocators, LcrV, has been attributed other functions in addition to its role in translocation. These functions include regulation, presumably via interaction with LcrG inside bacteria, and immunomodulation via interaction with Toll-like receptor 2. Here we wanted to address the significance of the specific targeting of LcrV to the exterior for its function in regulation, effector targeting, and virulence. The results, highlighting key N-terminal amino acids important for LcrV secretion, allowed us to dissect the role of LcrV in regulation from that in effector targeting/virulence. While only low levels of exported LcrV were required for in vitro effector translocation, as deduced by a cell infection assay, fully functional export of LcrV was found to be a prerequisite for its role in virulence in the systemic murine infection model.


2009 ◽  
Vol 187 (7) ◽  
pp. 1101-1116 ◽  
Author(s):  
Chiara Francavilla ◽  
Paola Cattaneo ◽  
Vladimir Berezin ◽  
Elisabeth Bock ◽  
Diletta Ami ◽  
...  

Neural cell adhesion molecule (NCAM) associates with fibroblast growth factor (FGF) receptor-1 (FGFR1). However, the biological significance of this interaction remains largely elusive. In this study, we show that NCAM induces a specific, FGFR1-mediated cellular response that is remarkably different from that elicited by FGF-2. In contrast to FGF-induced degradation of endocytic FGFR1, NCAM promotes the stabilization of the receptor, which is recycled to the cell surface in a Rab11- and Src-dependent manner. In turn, FGFR1 recycling is required for NCAM-induced sustained activation of various effectors. Furthermore, NCAM, but not FGF-2, promotes cell migration, and this response depends on FGFR1 recycling and sustained Src activation. Our results implicate NCAM as a nonconventional ligand for FGFR1 that exerts a peculiar control on the intracellular trafficking of the receptor, resulting in a specific cellular response. Besides introducing a further level of complexity in the regulation of FGFR1 function, our findings highlight the link of FGFR recycling with sustained signaling and cell migration and the critical role of these events in dictating the cellular response evoked by receptor activation.


2010 ◽  
Vol 21 (12) ◽  
pp. 2078-2086 ◽  
Author(s):  
Najate Benhra ◽  
Françoise Vignaux ◽  
Aurore Dussert ◽  
François Schweisguth ◽  
Roland Le Borgne

Notch receptors mediate short-range signaling controlling many developmental decisions in metazoans. Activation of Notch requires the ubiquitin-dependent endocytosis of its ligand Delta. How ligand endocytosis in signal-sending cells regulates receptor activation in juxtaposed signal-receiving cells remains largely unknown. We show here that a pool of Delta localizes at the basolateral membrane of signal-sending sensory organ precursor cells in the dorsal thorax neuroepithelium of Drosophila and that Delta is endocytosed in a Neuralized-dependent manner from this basolateral membrane. This basolateral pool of Delta is segregated from Notch that accumulates apically. Using a compartimentalized antibody uptake assay, we show that murine Delta-like 1 is similarly internalized by mNeuralized2 from the basolateral membrane of polarized Madin-Darby canine kidney cells and that internalized ligands are transcytosed to the apical plasma membrane where mNotch1 accumulates. Thus, endocytosis of Delta by Neuralized relocalizes Delta from the basolateral to the apical membrane domain. We speculate that this Neuralized-dependent transcytosis regulates the signaling activity of Delta by relocalizing Delta from a membrane domain where it cannot interact with Notch to another membrane domain where it can bind and activate Notch.


Author(s):  
Xin Dai ◽  
Xiao-Feng Sun ◽  
Ai-Qin Wang ◽  
Wanhong Wei ◽  
Sheng-Mei Yang

Gallic acid (GA), a phenol that is present in various plants, potentially contains antioxidant properties. This study aimed to investigate the effects of GA on the reproduction of adolescent male Brandt’s voles (Lasiopodomys brandtii (Radde, 1861)). Antioxidant levels and apoptosis in the testis, as well as reproductive physiology, were evaluated in adolescent males treated with GA. The results showed that a low dose of GA enhanced relative epididymis weight and the sperm density in the epididymis, increased the mRNA levels of steroidogenic acute regulatory protein in the testis, and reduced the percentages of abnormal and dead sperm. In addition, a low dose of GA significantly increased the levels of superoxide dismutase, catalase, and glutathione peroxidase, and decreased the level of malondialdehyde in the testis, as well as the mRNA and protein levels of the apoptosis related gene, caspase-3. However, a high dose of GA sharply reduced the average diameter of the seminiferous tubules compared to a low dose. Collectively, these findings demonstrate that GA treatment during puberty affects the reproductive responses of male Brandt’s voles in a dose-dependent manner by regulating antioxidant levels and apoptosis.


1991 ◽  
Vol 11 (10) ◽  
pp. 4998-5004
Author(s):  
M K Bagchi ◽  
S Y Tsai ◽  
M J Tsai ◽  
B W O'Malley

Steroid receptors regulate transcription of target genes in vivo and in vitro in a steroid hormone-dependent manner. Unoccupied progesterone receptor exists in the low-salt homogenates of target cells as a functionally inactive 8 to 10S complex with several nonreceptor components such as two molecules of 90-kDa heat shock protein (hsp90), a 70-kDa heat shock protein (hsp70), and a 56-kDa heat shock protein (hsp56). Ligand-induced dissociation of receptor-associated proteins such as hsp90 has been proposed as the mechanism of receptor activation. Nevertheless, it has not been established whether, beyond release of heat shock proteins, the steroidal ligand plays a role in modulating receptor activity. To examine whether the release of these nonreceptor proteins from receptor complex results in a constitutively active receptor, we isolated an unliganded receptor form essentially free of hsp90, hsp70, and hsp56. Using a recently developed steroid hormone-responsive cell-free transcription system, we demonstrate for the first time that the dissociation of heat shock proteins is not sufficient to generate a functionally active receptor. This purified receptor still requires hormone for high-affinity binding to a progesterone response element and for efficient transcriptional activation of a target gene. When an antiprogestin, Ru486, is bound to the receptor, it fails to promote efficient transcription. We propose that in the cell, in addition to the release of receptor-associated inhibitory proteins, a distinct hormone-mediated activation event must precede efficient gene activation.


Sign in / Sign up

Export Citation Format

Share Document