Insights into in vitro phenotypic plasticity, growth and secondary metabolites of the mycobiont isolated from the lichen Platygramme caesiopruinosa

2021 ◽  
Vol 204 (1) ◽  
Author(s):  
Karthik Shanmugam ◽  
Muthukumar Srinivasan ◽  
Hariharan Gopalasamudram Neelakantan
Author(s):  
V. Naumenko ◽  
B. Sorochynskyi ◽  
Ya. Blume

2020 ◽  
Vol 36 (6) ◽  
pp. 35-48
Author(s):  
D.V. Коchkin ◽  
G.I. Sobolkovа ◽  
А.А. Fоmеnkov ◽  
R.А. Sidorov ◽  
А.М. Nоsоv

The physiological characteristics of the callus cell cultures of Alhagi persarum Boiss et Buhse, a member of the legume family, widely used in folk medicine, have been studied. It was shown that the source of the explant was an important factor in the initiation of callusogenesis: more intense callusogenesis (almost 100%) was observed for explants from various organs of sterile seedlings, rather than intact plants (less than 30%). As a result, more than 20 lines of morphologically different callus cell cultures were obtained, and the growth parameters for the 5 most intensively growing lines were determined. The composition of fatty acids (FA) of total lipids and secondary metabolites in the most physiologically stable callus line Aр-207 was analyzed. Using capillary gas-liquid chromatography with mass spectrometric detection (GLC-MS), 19 individual C12--C24 FAs were identified, the main fraction of which were palmitic (~ 23%), stearic (~ 22%), linoleic (~ 14%) and α-linolenic (~ 33%) acids. The established atypical ratio of FAs (a simultaneous high content of both saturated FAs and polyunsaturated α-linolenic acid) is possibly due to the adaptation of cells to in vitro growth conditions. Phytochemical analysis of the secondary metabolites was carried out using ultra-performance liquid chromatography with electrospray ionization mass spectrometric detection (UPLC MS). Compounds belonging to different structural groups of isoflavones were found. Aglycones (calycosin, formononetin and afrormosin isomer), glucosides (formononetin glucoside), as well as esters of glucosides (malonylglycosides of calicosin, formononetin, afrormosin isomers, glycitein and genistein) were detected. These secondary metabolites are widespread in plants of the Fabaceae family; however, isoflavones are rare in representatives of the Alhagi genus. The presence of malonylated isoflavone glycosides in Alhagi spp. was shown for the first time. endemic plant species, Alhagi, in vitro cell culture, callus cell culture, isoflavones, fatty acids All studies were carried out using the equipment of the "Experimental Biotechnological Facility" and the "All-Russian Collection of Cell Cultures of Higher Plants" of IРР RAS. This work was supported by the Russian Foundation for Basic Research (RFBR), contract no.18-54-06021 (Az_a), and the Government of the Russian Federation, Megagrant Project no. 075-15-2019-1882.


2018 ◽  
Vol 24 (17) ◽  
pp. 1899-1904
Author(s):  
Daniel Fabio Kawano ◽  
Marcelo Rodrigues de Carvalho ◽  
Mauricio Ferreira Marcondes Machado ◽  
Adriana Karaoglanovic Carmona ◽  
Gilberto Ubida Leite Braga ◽  
...  

Background: Fungal secondary metabolites are important sources for the discovery of new pharmaceuticals, as exemplified by penicillin, lovastatin and cyclosporine. Searching for secondary metabolites of the fungi Metarhizium spp., we previously identified tyrosine betaine as a major constituent. Methods: Because of the structural similarity with other inhibitors of neprilysin (NEP), an enzyme explored for the treatment of heart failure, we devised the synthesis of tyrosine betaine and three analogues to be subjected to in vitro NEP inhibition assays and to molecular modeling studies. Results: In spite of the similar binding modes with other NEP inhibitors, these compounds only displayed moderate inhibitory activities (IC50 ranging from 170.0 to 52.9 µM). However, they enclose structural features required to hinder passive blood brain barrier permeation (BBB). Conclusions: Tyrosine betaine remains as a starting point for the development of NEP inhibitors because of the low probability of BBB permeation and, consequently, of NEP inhibition at the Central Nervous System, which is associated to an increment in the Aβ levels and, accordingly, with a higher risk for the onset of Alzheimer's disease.


2020 ◽  
Vol 26 (24) ◽  
pp. 2817-2842
Author(s):  
Ewa Skała ◽  
Joanna Makowczyńska ◽  
Joanna Wieczfinska ◽  
Tomasz Kowalczyk ◽  
Przemysław Sitarek

Background: For a long time, the researchers have been looking for new efficient methods to enhance production and obtain valuable plant secondary metabolites, which would contribute to the protection of the natural environment through the preservation of various plant species, often rare and endangered. These possibilities offer plant in vitro cultures which can be performed under strictly-controlled conditions, regardless of the season or climate and environmental factors. Biotechnological methods are promising strategies for obtaining the valuable plant secondary metabolites with various classes of chemical compounds including caffeoylquinic acids (CQAs) and their derivatives. CQAs have been found in many plant species which are components in the daily diet and exhibit a wide spectrum of biological activities, including antioxidant, immunomodulatory, antihypertensive, analgesic, anti-inflammatory, hepato- and neuroprotective, anti-hyperglycemic, anticancer, antiviral and antimicrobial activities. They have also been found to offer protection against Alzheimer’s disease, and play a role in weight reduction and lipid metabolism control, as well as modulating the activity of glucose-6-phosphatase involved in glucose metabolism. Methods: This work presents the review of the recent advances in use in vitro cultures of various plant species for the alternative system to the production of CQAs and their derivatives. Production of the secondary metabolites in in vitro culture is usually performed with cell suspension or organ cultures, such as shoots and adventitious or transformed roots. To achieve high production of valuable secondary metabolites in in vitro cultures, the optimization of the culture condition is necessary with respect to both biomass accumulation and metabolite content. The optimization of the culture conditions can be achieved by choosing the type of medium, growth regulators or growth conditions, selection of high-productivity lines or culture period, supplementation of the culture medium with precursors or elicitor treatments. Cultivation for large-scale in bioreactors and genetic engineering: Agrobacterium rhizogenes transformation and expression improvement of transcriptional factor or genes involved in the secondary metabolite production pathway are also efficient strategies for enhancement of the valuable secondary metabolites. Results: Many studies have been reported to obtain highly productive plant in vitro cultures with respect to CQAs. Among these valuable secondary metabolites, the most abundant compound accumulated in in vitro cultures was 5-CQA (chlorogenic acid). Highly productive cultures with respect to this phenolic acid were Leonurus sibiricus AtPAP1 transgenic roots, Lonicera macranthoides and Eucomia ulmoides cell suspension cultures which accumulated above 20 mg g-1 DW 5-CQA. It is known that di- and triCQAs are less common in plants than monoCQAs, but it was also possible to obtain them by biotechnological methods. Conclusion: The results indicate that the various in vitro cultures of different plant species can be a profitable approach for the production of CQAs. In particular, an efficient production of these valuable compounds is possible by Lonicera macranthoides and Eucomia ulmoides cell suspension cultures, Leonurus sibiricus transformed roots and AtPAP1 transgenic roots, Echinacea angustifolia adventitious shoots, Rhaponticum carthamoides transformed plants, Lavandula viridis shoots, Sausera involucrata cell suspension and Cichorium intybus transformed roots.


2016 ◽  
Vol 5 (03) ◽  
pp. 4927 ◽  
Author(s):  
Shubhi Srivastava ◽  
Paul A. K.

Plant associated microorganisms that colonize the upper and internal tissues of roots, stems, leaves and flowers of healthy plants without causing any visible harmful or negative effect on their host. Diversity of microbes have been extensively studied in a wide variety of vascular plants and shown to promote plant establishment, growth and development and impart resistance against pathogenic infections. Ferns and their associated microbes have also attracted the attention of the scientific communities as sources of novel bioactive secondary metabolites. The ferns and fern alleles, which are well adapted to diverse environmental conditions, produce various secondary metabolites such as flavonoids, steroids, alkaloids, phenols, triterpenoid compounds, variety of amino acids and fatty acids along with some unique metabolites as adaptive features and are traditionally used for human health and medicine. In this review attention has been focused to prepare a comprehensive account of ethnomedicinal properties of some common ferns and fern alleles. Association of bacteria and fungi in the rhizosphere, phyllosphere and endosphere of these medicinally important ferns and their interaction with the host plant has been emphasized keeping in view their possible biotechnological potentials and applications. The processes of host-microbe interaction leading to establishment and colonization of endophytes are less-well characterized in comparison to rhizospheric and phyllospheric microflora. However, the endophytes are possessing same characteristics as rhizospheric and phyllospheric to stimulate the in vivo synthesis as well as in vitro production of secondary metabolites with a wide range of biological activities such as plant growth promotion by production of phytohormones, siderophores, fixation of nitrogen, and phosphate solubilization. Synthesis of pharmaceutically important products such as anticancer compounds, antioxidants, antimicrobials, antiviral substances and hydrolytic enzymes could be some of the promising areas of research and commercial exploitation.


2021 ◽  
pp. 1-16
Author(s):  
Erika-Alejandra Salinas-Peña ◽  
Martha Mendoza-Rodríguez ◽  
Claudia Velázquez-González ◽  
Carlo Eduardo Medina-Solis ◽  
América Patricia Pontigo-Loyola ◽  
...  

BACKGROUND: The Mexican serviceberry, Malacomeles denticulata, have been used as a successful oral therapy by Mexican communities without enough scientific support. OBJECTIVE: To evaluate the M. denticulata extracts with selective antibacterial properties over dental biofilm bacteria. METHODS: Fruit, Leaf, and Stem of M. denticulata extracts were evaluated with micro-broth dilution method using ATCC bacteria. OD600 values had compared against each positive control (T-student-test). Anaerobically viability had confirmed by Colony-Forming-Units. Thin-Layer-Chromatography was used to identify the number of compounds and phytochemicals to identify secondary metabolites of the selected extracts. RESULTS: Streptococcus mutans showed Minimum-Bactericidal-Concentrations_(MBC) at 30 mg/mL to Fruit, Leaf, and Stem extracts. Periodontal-pathogens Aggregatibacter actinomycetemcomitans serotype b_(MBC = 30 mg/mL_p <  0.01); Fusobacterium nucleatum subsp. nucleatum_(MBC = 30 mg/mL_p<0.001); Parvimonas micra_(MBC = 15 mg/mL_NS); Porphyromonas gingivalis_(MBC = 30 mg/mL_NS); and Prevotella intermedia_(MBC = 3.75 mg/mL_NS) presented higher sensitivity to Leaf-Methanol, than the primary colonizers. Phytochemicals showed positive results to anthraquinones, coumarins, flavonoids, saponins, saponins steroids/triterpenoids, steroids/triterpenes, and tannins/phenols. CONCLUSION: We suggest the natural extracts of fruit and leaf of the Mexican serviceberry for the preventive use over the oral cariogenic or periodontal biofilm species, by their selective antibacterial properties against pathogenic species evaluated in-vitro, and due to the presence of antibacterial secondary metabolites identified as flavonoids and saponins of M. denticulata leaf extracts.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 132
Author(s):  
Nilufar Z. Mamadalieva ◽  
Davlat Kh. Akramov ◽  
Ludger A. Wessjohann ◽  
Hidayat Hussain ◽  
Chunlin Long ◽  
...  

The genus Lagochilus (Lamiaceae) is native to Central, South-Central, and Eastern Asia. It comprises 44 species, which have been commonly used as herbal medicines for the treatments of various ailments for thousands of years, especially in Asian countries. This review aims to summarize the chemical constituents and pharmacological activities of species from the genus Lagochilus to unveil opportunities for future research. In addition, we provide some information about their traditional uses, botany, and diversity. More than 150 secondary metabolites have been reported from Lagochilus, including diterpenes, flavonoids, phenolic compounds, triterpenoids, iridoid glycosides, lignans, steroids, alkaloids, polysaccharides, volatile, non-volatile and aromatic compounds, lipids, carbohydrates, minerals, vitamins, and other secondary metabolites. In vitro and in vivo pharmacological studies on the crude extracts, fractions, and isolated compounds from Lagochilus species showed hemostatic, antibacterial, anti-inflammatory, anti-allergic, cytotoxic, enzyme inhibitory, antispasmodic, hypotensive, sedative, psychoactive, and other activities.


3 Biotech ◽  
2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Saikat Gantait ◽  
Manisha Mahanta ◽  
Soumen Bera ◽  
Sandeep Kumar Verma

AbstractEmblica officinalis Gaertn. syn. Phyllanthus emblica L., universally known as ‘Amla’ or ‘Aonla’ or ‘Indian gooseberry’, is a popular fruit tree belonging to the family Euphorbiaceae and order Geraniales. It is said to be the very first tree that originated on earth, as claimed by age-old Indian mythology. Almost all parts of the tree i.e., root, bark, leaf, flower, fruit and seed are utilized in Ayurvedic and Unani medicinal formulations to improve the overall digestive process, decrease fever, act as a blood purifier, relieve asthma and cough, improve heart health, etc. This tree contains major secondary metabolites like emblicanin-A and emblicanin-B, and also is an affluent source of vitamin-C. Additionally, some other secondary metabolites like tannins, gallic acid, pyrogallol, and pectin are also present in significant amounts. Conventional propagation has been improved via suitable interventions of agrotechnology both in production and protection areas. However, the rate of propagation remains slower; therefore, attempts have been made for biotechnological advancements on E. officinalis. The present review makes an attempt to highlight the botanical description, geographical distribution, ethnopharmacological importance, conventional propagation and protection of this medicinal tree, describing the in vitro-based plant organ and tissue culture methods like direct and indirect organogenesis and somatic embryogenesis along with interventions of molecular marker-based biotechnology and nanotechnology. Further, the prospect of the yet-to-be-explored biotechnological methods for secondary metabolite enhancement like cell suspension, protoplast culture, genetic transformation, etc. and their potential for enhanced emblicanin production have also been discussed in this appraisal.


2021 ◽  
Vol 8 (02) ◽  
pp. e62-e68
Author(s):  
Jeeta Sarkar ◽  
Nirmalya Banerjee

AbstractSteroid alkaloid solasodine is a nitrogen analogue of diosgenin and has great importance in the production of steroidal medicines. Solanum erianthum D. Don (Solanaceae) is a good source of solasodine. The aim of this study was to evaluate the effect of different cytokinins on the production of secondary metabolites, especially solasodine in the in vitro culture of S. erianthum. For solasodine estimation, field-grown plant parts and in vitro tissues were extracted thrice and subjected to high-performance liquid Chromatography. Quantitative analysis of different secondary metabolites showed that the amount was higher in the in vitro regenerated plantlets compared to callus and field-grown plants. The present study critically evaluates the effect of the type of cytokinin used in the culture medium on solasodine accumulation in regenerated plants. The highest solasodine content (46.78±3.23 mg g-1) was recorded in leaf extracts of the in vitro grown plantlets in the presence of 6-γ,γ-dimethylallylamino purine in the culture medium and the content was 3.8-fold higher compared to the mother plant.


Sign in / Sign up

Export Citation Format

Share Document