Ionomic profiling of Nicotiana langsdorffii wild-type and mutant genotypes exposed to abiotic stresses

2012 ◽  
Vol 405 (2-3) ◽  
pp. 665-677 ◽  
Author(s):  
Francisco Ardini ◽  
Francesco Soggia ◽  
Maria Luisa Abelmoschi ◽  
Emanuele Magi ◽  
Marco Grotti
2019 ◽  
Vol 20 (16) ◽  
pp. 3930 ◽  
Author(s):  
Komivi Dossa ◽  
Marie A. Mmadi ◽  
Rong Zhou ◽  
Tianyuan Zhang ◽  
Ruqi Su ◽  
...  

Sesame is a source of a healthy vegetable oil, attracting a growing interest worldwide. Abiotic stresses have devastating effects on sesame yield; hence, studies have been performed to understand sesame molecular responses to abiotic stresses, but the core abiotic stress-responsive genes (CARG) that the plant reuses in response to an array of environmental stresses are unknown. We performed a meta-analysis of 72 RNA-Seq datasets from drought, waterlogging, salt and osmotic stresses and identified 543 genes constantly and differentially expressed in response to all stresses, representing the sesame CARG. Weighted gene co-expression network analysis of the CARG revealed three functional modules controlled by key transcription factors. Except for salt stress, the modules were positively correlated with the abiotic stresses. Network topology of the modules showed several hub genes predicted to play prominent functions. As proof of concept, we generated over-expressing Arabidopsis lines with hub and non-hub genes. Transgenic plants performed better under drought, waterlogging, and osmotic stresses than the wild-type plants but did not tolerate the salt treatment. As expected, the hub gene was significantly more potent than the non-hub gene. Overall, we discovered several novel candidate genes, which will fuel investigations on plant responses to multiple abiotic stresses.


2015 ◽  
Vol 407 (21) ◽  
pp. 6357-6368 ◽  
Author(s):  
Elisa Scalabrin ◽  
Marta Radaelli ◽  
Giovanni Rizzato ◽  
Patrizia Bogani ◽  
Marcello Buiatti ◽  
...  

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Rajesh Kumar Jha ◽  
Avinash Mishra

Salicornia brachiata is an extreme halophyte that commonly grows on marsh conditions and is also considered a promising resource for drought and salt-responsive genes. To unveil a glimpse of stress endurance by plants, it is of the utmost importance to develop an understanding of stress tolerance mechanisms. ‘Early Responsive to Dehydration’ (ERD) genes are defined as a group of genes involved in stress tolerance and the development of plants. To increase this understanding, parallel to this expedited thought, a novel SbERD4 gene was cloned from S. brachiata, characterized, and functionally validated in the model plant tobacco. The study showed that SbERD4 is a plasma-membrane bound protein, and its overexpression in tobacco plants improved salinity and osmotic stress tolerance. Transgenic plants showed high relative water, chlorophylls, sugars, starch, polyphenols, proline, free amino acids, and low electrolyte leakage and H2O2 content compared to control plants (wild type and vector control) under different abiotic stress conditions. Furthermore, the transcript expression of antioxidant enzyme encoding genes NtCAT, NtSOD, NtGR, and NtAPX showed higher expression in transgenic compared to wild-type and vector controls under varying stress conditions. Overall, the overexpression of a novel early responsive to dehydration stress protein 4-encoding gene (SbERD4) enhanced the tolerance of the plant against multiple abiotic stresses. In conclusion, the overexpression of the SbERD4 gene mitigates plant physiology by enduring stress tolerance and might be considered as a promising key gene for engineering salinity and drought stress tolerance in crops.


2007 ◽  
Vol 5 (3) ◽  
pp. 21-24 ◽  
Author(s):  
Tatyana V Matveeva ◽  
Tatiana Yu Pigichka ◽  
Ludmila A Lutova

Ability to transformation by wt strains of Agrobacterium tumefaciens (T37, C58, A6) and A. rhizogenes (15834, 8196, A4) was characterized for Nicotiana langsdorffii. It was shown that effectivity of transformation of this species by strains T37, A6,15834, 8196, A4 was lower comparing to the model object N. tabacum. Tumors induced by A. tumefaciens on leaf disks of N. langsdorffii, tend to shoot formation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jiexuan Zheng ◽  
Huaxiang Su ◽  
Ruoyi Lin ◽  
Hui Zhang ◽  
Kuaifei Xia ◽  
...  

Abstract Late embryogenesis abundant (LEA) proteins belong to a large family that exists widely in plants and is mainly involved in desiccation processes during plant development or in the response to abiotic stresses. Here, we reported on an atypical LEA gene (IpLEA) related to salt tolerance from Ipomoea pes-caprae L. (Convolvulaceae). Sequence analysis revealed that IpLEA belongs to the LEA_2 (PF03168) group. IpLEA was shown to have a cytoplasmic localization pattern. Quantitative reverse transcription PCR analysis showed that IpLEA was widely expressed in different organs of the I. pes-caprae plants, and the expression levels increased following salt, osmotic, oxidative, freezing, and abscisic acid treatments. Analysis of the 1,495 bp promoter of IpLEA identified distinct cis-acting regulatory elements involved in abiotic stress. Induction of IpLEA improved Escherichia coli growth performance compared with the control under abiotic stresses. To further assess the function of IpLEA in plants, transgenic Arabidopsis plants overexpressing IpLEA were generated. The IpLEA-overexpressing Arabidopsis seedlings and adult plants showed higher tolerance to salt and drought stress than the wild-type. The transgenic plants also showed higher oxidative stress tolerance than the wild-type Arabidopsis. Furthermore, the expression patterns of a series of stress-responsive genes were affected. The results indicate that IpLEA is involved in the plant response to salt and drought, probably by mediating water homeostasis or by acting as a reactive oxygen species scavenger, thereby influencing physiological processes under various abiotic stresses in microorganisms and plants.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jing Ma ◽  
Li-yue Wang ◽  
Jia-xi Dai ◽  
Ying Wang ◽  
Duo Lin

Abstract Background The NAC (NAM, ATAF1/ATAF2, and CUC2) transcription factors belong to a large family of plant-specific transcription factors in monocot and dicot species. These transcription factors regulate the expression of stress tolerance-related genes that protect plants from various abiotic stresses, including drought, salinity, and low temperatures. Results In this study, we identified the CaNAC46 transcription factor gene in Capsicum annuum. Its open reading frame was revealed to comprise 921 bp, encoding a protein consisting of 306 amino acids, with an isoelectric point of 6.96. A phylogenetic analysis indicated that CaNAC46 belongs to the ATAF subfamily. The expression of CaNAC46 was induced by heat, cold, high salt, drought, abscisic acid, salicylic acid, and methyl jasmonate treatments. Thus, CaNAC46 may be important for the resistance of dry pepper to abiotic stresses. A subcellular localization analysis confirmed that CaNAC46 is localized in the nucleus. The overexpression of CaNAC46 improved the tolerance of transgenic Arabidopsis thaliana plants to drought and salt stresses. The CaNAC46-overexpressing lines had longer roots and more lateral roots than wild-type lines under prolonged drought and high salt stress conditions. Additionally, CaNAC46 affected the accumulation of reactive oxygen species (ROS). Moreover, CaNAC46 promoted the expression of SOD, POD, RD29B, RD20, LDB18, ABI, IAA4, and P5CS. The malondialdehyde contents were higher in TRV2-CaNAC46 lines than in wild-type plants in response to drought and salt stresses. Furthermore, the expression levels of stress-responsive genes, such as ABA2, P5CS, DREB, RD22, CAT, and POD, were down-regulated in TRV2-CaNAC46 plants. Conclusions Under saline and drought conditions, CaNAC46 is a positive regulator that activates ROS-scavenging enzymes and enhances root formation. The results of our study indicate CaNAC46 is a transcriptional regulator responsible for salinity and drought tolerance and suggest the abiotic stress-related gene regulatory mechanisms controlling this NAC transcription factor are conserved between A. thaliana and pepper.


2021 ◽  
Vol 22 (17) ◽  
pp. 9175
Author(s):  
Asma Ayaz ◽  
Haodong Huang ◽  
Minglü Zheng ◽  
Wajid Zaman ◽  
Donghai Li ◽  
...  

Cutin and wax are the main precursors of the cuticle that covers the aerial parts of plants and provide protection against biotic and abiotic stresses. Long-chain acyl-CoA synthetases (LACSs) play diversified roles in the synthesis of cutin, wax, and triacylglycerol (TAG). Most of the information concerned with LACS functions is obtained from model plants, whereas the roles of LACS genes in Glycine max are less known. Here, we have identified 19 LACS genes in Glycine max, an important crop plant, and further focused our attention on 4 LACS2 genes (named as GmLACS2-1, 2, 3, 4, respectively). These GmLACS2 genes display different expression patterns in various organs and also show different responses to abiotic stresses, implying that these genes might play diversified functions during plant growth and against stresses. To further identify the role of GmLACS2-3, greatly induced by abiotic stresses, we transformed a construct containing its full length of coding sequence into Arabidopsis. The expression of GmLACS2-3 in an Arabidopsis atlacs2 mutant greatly suppressed its phenotype, suggesting it plays conserved roles with that of AtLACS2. The overexpression of GmLACS2-3 in wild-type plants significantly increased the amounts of cutin and suberin but had little effect on wax amounts, indicating the specific role of GmLACS2-3 in the synthesis of cutin and suberin. In addition, these GmLACS2-3 overexpressing plants showed enhanced drought tolerance. Taken together, our study deepens our understanding of the functions of LACS genes in different plants and also provides a clue for cultivating crops with strong drought resistance.


Genetika ◽  
2016 ◽  
Vol 48 (2) ◽  
pp. 445-462 ◽  
Author(s):  
Amir Khalatbari ◽  
Hawa Jaafar ◽  
Amir Khalatbari ◽  
Maziah Mahmood ◽  
Radziah Othman

Plants experience different abiotic stresses under natural conditions including salinity, water deficit, low temperature and high light. Once plants are exposed to these stresses they might have a variety of responses physiologically and biochemically. In this study, we test this hypothesis in wild type Col-0 and vte4 mutant of Arabidopsis thaliana by measuring major secondary metabolites alongside with total chlorophyll content under different abiotic stresses namely salt stress, water stress and prolonged water deficiency. These stresses were imposed to the plants in separate experiments in which each treatment was replicated three times in a complete randomized design with factorial arrangement. It was concluded that under all abiotic stresses wild type Col-0 Arabidopsis plants showed stronger performance in terms of all major metabolites compared to vte4 mutant. ?-tocopherol deficiency in vte4 mutant plants led to lower accumulation of proline, total protein and total amino acids as well as starch and total sugars in comparison with wild type A. thaliana. Furthermore, all five secondary metabolites obtained the highest value under 100mM NaCl concentration (Salt stress), under 50% of field capacity (water stress) and under 8 days of water withholding (prolonged water deficiency). Wild type Col-0 resulted in higher level of total chlorophyll content under all abiotic stresses compared to mutant plants. Therefore, our results suggested that the loss of ?-tocopherol in vte4 mutant A.thaliana under different abiotic stresses affected the efficiency and the stability of central metabolism and photosynthetic apparatus.


2016 ◽  
Author(s):  
Ping Zhao ◽  
Rong Cui ◽  
Ping Xu ◽  
Jieli Mao ◽  
Yu Chen ◽  
...  

Photosynthesis is sensitive to environmental stresses. How nuclear and plastid genome coordinate to cope with abiotic stress is not well understood. Here we report that ATHB17, an Arabidopsis HD-Zip transcription factor, coordinates the expression of nuclear encoded photosynthetic genes (NEPGs) and plastid encoded genes (PEGs) in response to abiotic stress. ATHB17-overexpressing plants display enhanced stress tolerance, whereas its knockout mutant is more sensitive compared to the wild type. Through RNA-seq analysis, we found that ATHB17 down-regulated many NEPGs while up-regulated a number of PEGs. ATHB17 could directly modulate the expression of several NEPGs by binding to their promoters. Furthermore, we identified ATSIG5, encoding a plastid sigma factor, as one of the target genes of ATHB17. Loss of ATSIG5 reduced salt tolerance while overexpression of ATSIG5 enhanced salt tolerance, similar to that of ATHB17. Taken together, our results reveal that ATHB17 is an important coordinator between NEPGs and PEGs partially through ATSIG5 to protect photosynthesis machinery in response to abiotic stresses.


Sign in / Sign up

Export Citation Format

Share Document