scholarly journals “Lessons from Rare Forms of Osteoarthritis”

2021 ◽  
Vol 109 (3) ◽  
pp. 291-302 ◽  
Author(s):  
Rebecca F. Shepherd ◽  
Jemma G. Kerns ◽  
Lakshminarayan R. Ranganath ◽  
James A. Gallagher ◽  
Adam M. Taylor

Abstract Osteoarthritis (OA) is one of the most prevalent conditions in the world, particularly in the developed world with a significant increase in cases and their predicted impact as we move through the twenty-first century and this will be exacerbated by the covid pandemic. The degeneration of cartilage and bone as part of this condition is becoming better understood but there are still significant challenges in painting a complete picture to recognise all aspects of the condition and what treatment(s) are most appropriate in individual causes. OA encompasses many different types and this causes some of the challenges in fully understanding the condition. There have been examples through history where much has been learnt about common disease(s) from the study of rare or extreme phenotypes, particularly where Mendelian disorders are involved. The often early onset of symptoms combined with the rapid and aggressive pathogenesis of these diseases and their predictable outcomes give an often-under-explored resource. It is these “rarer forms of disease” that William Harvey referred to that offer novel insights into more common conditions through their more extreme presentations. In the case of OA, GWAS analyses demonstrate the multiple genes that are implicated in OA in the general population. In some of these rarer forms, single defective genes are responsible. The extreme phenotypes seen in conditions such as Camptodactyly Arthropathy-Coxa Vara-pericarditis Syndrome, Chondrodysplasias and Alkaptonuria all present potential opportunities for greater understanding of disease pathogenesis, novel therapeutic interventions and diagnostic imaging. This review examines some of the rarer presenting forms of OA and linked conditions, some of the novel discoveries made whilst studying them, and findings on imaging and treatment strategies.

Author(s):  
Mary Youssef

This book examines questions of identity, nationalism, and marginalization in the contemporary Egyptian novel from a postcolonial lens. Under colonial rule, the Egyptian novel invoked a sovereign nation-state by basking in its perceived unity. After independence, the novel professed disenchantment with state practices and unequal class and gender relations, without disrupting the nation’s imagined racial and ethno-religious homogeneity. This book identifies a trend in the twenty-first-century Egyptian novel that shatters this singular view, with the rise of a new consciousness that presents Egypt as fundamentally heterogeneous. Through a robust analysis of “new-consciousness” novels by authors like Idris ᶜAli, Bahaᵓ Tahir, Miral al-Tahawi, and Yusuf Zaydan, the author argues that this new consciousness does not only respond to predominant discourses of difference and practices of differentiation along the axes of race, ethno-religion, class, and gender by bringing the experiences of Nubian, Amazigh, Bedouin, Coptic, Jewish, and women minorities to the fore of Egypt’s literary imaginary, but also heralds the cacophony of voices that collectively cried for social justice from Tahrir Square in Egypt’s 2011-uprising. This study responds to the changing iconographic, semiotic, and formal features of the Egyptian novel. It fulfills the critical task of identifying an emergent novelistic genre and develops historically reflexive methodologies that interpret new-consciousness novels and their mediatory role in formalizing and articulating their historical moment. By adopting this context-specific approach to studying novelistic evolution, this book locates some of the strands that have been missing from the complex whole of Egypt’s culture and literary history.


2021 ◽  
Vol 22 (3) ◽  
pp. 1411
Author(s):  
Caterina Fede ◽  
Carmelo Pirri ◽  
Chenglei Fan ◽  
Lucia Petrelli ◽  
Diego Guidolin ◽  
...  

The fascia can be defined as a dynamic highly complex connective tissue network composed of different types of cells embedded in the extracellular matrix and nervous fibers: each component plays a specific role in the fascial system changing and responding to stimuli in different ways. This review intends to discuss the various components of the fascia and their specific roles; this will be carried out in the effort to shed light on the mechanisms by which they affect the entire network and all body systems. A clear understanding of fascial anatomy from a microscopic viewpoint can further elucidate its physiological and pathological characteristics and facilitate the identification of appropriate treatment strategies.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ahmed Maseh Haidary ◽  
Sarah Noor ◽  
Esmatullah Hamed ◽  
Tawab Baryali ◽  
Soma Rahmani ◽  
...  

Abstract Introduction The novel coronavirus, since its first identification in China, in December 2019, has shown remarkable heterogeneity in its clinical behavior. It has affected humans on every continent. Clinically, it has affected every organ system. The outcome has also been variable, with most of the older patients showing grave outcomes as compared with the younger individuals. Here we present a rare and severe variant of Guillain–Barre syndrome that complicated the disease in recovery phase. Case presentation A 60-year-old Afghan man, who had been recovering from symptoms related to novel coronavirus associated disease, presented with sudden onset of progressive muscle weakness and oxygen desaturation. Electrophysiological workup confirmed the diagnosis of Guillain–Barre syndrome, and early institution of intravenous immunoglobulin resulted in complete resolution. Conclusion Guillain–Barre syndrome has recently been reported in many patients diagnosed with novel coronavirus associated disease. While clinical suspicion is mandatory to guide towards an effective diagnostic workup, early diagnosis of this complication and timely institution of therapeutic interventions are indispensable and lifesaving.


2021 ◽  
pp. 1-16
Author(s):  
Anca Butiuc-Keul ◽  
Anca Farkas ◽  
Rahela Carpa ◽  
Dumitrana Iordache

Being frequently exposed to foreign nucleic acids, bacteria and archaea have developed an ingenious adaptive defense system, called CRISPR-Cas. The system is composed of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) array, together with CRISPR (<i>cas</i>)-associated genes. This system consists of a complex machinery that integrates fragments of foreign nucleic acids from viruses and mobile genetic elements (MGEs), into CRISPR arrays. The inserted segments (spacers) are transcribed and then used by cas proteins as guide RNAs for recognition and inactivation of the targets. Different types and families of CRISPR-Cas systems consist of distinct adaptation and effector modules with evolutionary trajectories, partially independent. The origin of the effector modules and the mechanism of spacer integration/deletion is far less clear. A review of the most recent data regarding the structure, ecology, and evolution of CRISPR-Cas systems and their role in the modulation of accessory genomes in prokaryotes is proposed in this article. The CRISPR-Cas system&apos;s impact on the physiology and ecology of prokaryotes, modulation of horizontal gene transfer events, is also discussed here. This system gained popularity after it was proposed as a tool for plant and animal embryo editing, in cancer therapy, as antimicrobial against pathogenic bacteria, and even for combating the novel coronavirus – SARS-CoV-2; thus, the newest and promising applications are reviewed as well.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Heidi Luise Schulte ◽  
José Diego Brito-Sousa ◽  
Marcus Vinicius Guimarães Lacerda ◽  
Luciana Ansaneli Naves ◽  
Eliana Teles de Gois ◽  
...  

Abstract Background Since the novel coronavirus disease outbreak, over 179.7 million people have been infected by SARS-CoV-2 worldwide, including the population living in dengue-endemic regions, particularly Latin America and Southeast Asia, raising concern about the impact of possible co-infections. Methods Thirteen SARS-CoV-2/DENV co-infection cases reported in Midwestern Brazil between April and September of 2020 are described. Information was gathered from hospital medical records regarding the most relevant clinical and laboratory findings, diagnostic process, therapeutic interventions, together with clinician-assessed outcomes and follow-up. Results Of the 13 cases, seven patients presented Acute Undifferentiated Febrile Syndrome and six had pre-existing co-morbidities, such as diabetes, hypertension and hypopituitarism. Two patients were pregnant. The most common symptoms and clinical signs reported at first evaluation were myalgia, fever and dyspnea. In six cases, the initial diagnosis was dengue fever, which delayed the diagnosis of concomitant infections. The most frequently applied therapeutic interventions were antibiotics and analgesics. In total, four patients were hospitalized. None of them were transferred to the intensive care unit or died. Clinical improvement was verified in all patients after a maximum of 21 days. Conclusions The cases reported here highlight the challenges in differential diagnosis and the importance of considering concomitant infections, especially to improve clinical management and possible prevention measures. Failure to consider a SARS-CoV-2/DENV co-infection may impact both individual and community levels, especially in endemic areas.


2021 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Jan Traub ◽  
Leila Husseini ◽  
Martin S. Weber

The first description of neuromyelitis optica by Eugène Devic and Fernand Gault dates back to the 19th century, but only the discovery of aquaporin-4 autoantibodies in a major subset of affected patients in 2004 led to a fundamentally revised disease concept: Neuromyelits optica spectrum disorders (NMOSD) are now considered autoantibody-mediated autoimmune diseases, bringing the pivotal pathogenetic role of B cells and plasma cells into focus. Not long ago, there was no approved medication for this deleterious disease and off-label therapies were the only treatment options for affected patients. Within the last years, there has been a tremendous development of novel therapies with diverse treatment strategies: immunosuppression, B cell depletion, complement factor antagonism and interleukin-6 receptor blockage were shown to be effective and promising therapeutic interventions. This has led to the long-expected official approval of eculizumab in 2019 and inebilizumab in 2020. In this article, we review current pathogenetic concepts in NMOSD with a focus on the role of B cells and autoantibodies as major contributors to the propagation of these diseases. Lastly, by highlighting promising experimental and future treatment options, we aim to round up the current state of knowledge on the therapeutic arsenal in NMOSD.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Dongxin Zhang ◽  
Duyun Ye ◽  
Hongxiang Chen

Preeclampsia, a relatively common pregnancy disorder, is one of the major causes of maternal and fetal morbidity and mortality. Despite numerous research, the etiology of this syndrome remains not well understood as the pathogenesis of preeclampsia is complex, involving interaction between genetic, immunologic, and environmental factors. Preeclampsia, originating in placenta abnormalities, is induced by the circulating factors derived from the abnormal placenta. Recent work has identified various molecular mechanisms related to placenta development, including renin-angiotensin system, 1, 25-dihydroxyvitamin D, and lipoxin A4. Interestingly, advances suggest that vacuolar ATPase, a key molecule in placentation, is closely associated with them. Therefore, this intriguing molecule may represent an important link between various causes of preeclampsia. Here, we review that vacuolar ATPase works as a key link between multiple causes of preeclampsia and discuss the potential molecular mechanisms. The novel findings outlined in this review may provide promising explanations for the causation of preeclampsia and a rationale for future therapeutic interventions for this condition.


Author(s):  
Masahiro Yamashita

The lymphatic system has several physiological roles, including fluid homeostasis and the activation of adaptive immunity by fluid drainage and cell transport. Lymphangiogenesis occurs in adult tissues during various pathologic conditions. In addition, lymphangiogenesis is closely linked to capillary angiogenesis, and the balanced interrelationship between capillary angiogenesis and lymphangiogenesis is essential for maintaining homeostasis in tissues. Recently, an increasing body of information regarding the biology of lymphatic endothelial cells has allowed us to immunohistochemically characterize lymphangiogenesis in several lung diseases. Particular interest has been given to the interstitial lung diseases. Idiopathic interstitial pneumonias (IIPs) are characterized by heterogeneity in pathologic changes and lesions, as typified by idiopathic pulmonary fibrosis/usual interstitial pneumonia. In IIPs, lymphangiogenesis is likely to have different types of localized functions within each disorder, corresponding to the heterogeneity of lesions in terms of inflammation and fibrosis. These functions include inhibitory absorption of interstitial fluid and small molecules and maturation of fibrosis by excessive interstitial fluid drainage, caused by an unbalanced relationship between capillary angiogenesis and lymphangiogenesis and trafficking of antigen-presenting cells and induction of fibrogenesis via CCL21 and CCR7 signals. Better understanding for regional functions of lymphangiogenesis might provide new treatment strategies tailored to lesion heterogeneity in these complicated diseases.


Sign in / Sign up

Export Citation Format

Share Document