Comparison of the Drought Stress Responses of Tolerant and Sensitive Wheat Cultivars During Grain Filling: Changes in Flag Leaf Photosynthetic Activity, ABA Levels, and Grain Yield

2009 ◽  
Vol 28 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Adrienn Guóth ◽  
Irma Tari ◽  
Ágnes Gallé ◽  
Jolán Csiszár ◽  
Attila Pécsváradi ◽  
...  
PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1708 ◽  
Author(s):  
Kenny Paul ◽  
János Pauk ◽  
Zsuzsanna Deák ◽  
László Sass ◽  
Imre Vass

We report a case study of natural variations and correlations of some photosynthetic parameters, green biomass and grain yield in Cappelle Desprez and Plainsman V winter wheat (Triticum aestivumL.) cultivars, which are classified as being drought sensitive and tolerant, respectively. We monitored biomass accumulation from secondary leaves in the vegetative phase and grain yield from flag leaves in the grain filling period. Interestingly, we observed higher biomass production, but lower grain yield stability in the sensitive Cappelle cultivar, as compared to the tolerant Plainsman cv. Higher biomass production in the sensitive variety was correlated with enhanced water-use efficiency. Increased cyclic electron flow around PSI was also observed in the Cappelle cv. under drought stress as shown by light intensity dependence of the ratio of maximal quantum yields of Photosystem I and Photosystem II, as well by the plot of the Photosystem I electron transport rate as a function of Photosystem II electron transport rate. Higher CO2uptake rate in flag leaves of the drought-stressed Plainsman cv. during grain filling period correlates well with its higher grain yield and prolonged transpiration rate through spikes. The increase in drought factor (DFI) and performance (PI) indices calculated from variable chlorophyll fluorescence parameters of secondary leaves also showed correlation with higher biomass in the Cappelle cultivar during the biomass accumulation period. However, during the grain filling period, DFI and PI parameters of the flag leaves were higher in the tolerant Plainsman V cultivar and showed correlation with grain yield stability. Our results suggest that overall biomass and grain yield may respond differentially to drought stress in different wheat cultivars and therefore phenotyping for green biomass cannot be used as a general approach to predict grain yield. We also conclude that photosynthetic efficiency of flag and secondary leaves is correlated with grain yield and green biomass, respectively. In addition, secondary trait associated mechanisms like delayed senescence and higher water-use efficiency also contribute to biomass stability. Our studies further prove that photosynthetic parameters could be used to characterize environmental stress responses.


2007 ◽  
Vol 146 (1) ◽  
pp. 35-47 ◽  
Author(s):  
P. PELTONEN-SAINIO ◽  
S. MUURINEN ◽  
A. RAJALA ◽  
L. JAUHIAINEN

SUMMARYIncreased harvest index (HI) has been one of the principal factors contributing to genetic yield improvements in spring barley (Hordeum vulgare L.), oat (Avena sativa L.) and wheat (Triticum aestivum L.) cultivars. Although high HI demonstrates high-yielding ability when cultivars are compared, it can also indicate challenges to yield formation when comparisons are made across differing growing conditions. The present study was designed to investigate variation in HI among modern cereal cultivars relative to that brought about by a northern environment, to assess whether HI still explains the majority of the differences in grain yield when only modern cereal cultivars are compared, and to monitor key traits contributing to HI. Stability of HI was also investigated with reference to the role of tillers. Twelve experiments (3 years, two locations, two nitrogen fertilizer regimes) were carried out in southern Finland to evaluate 12 two-row spring barley, 10 six-row barley, 10 oat and 11 wheat cultivars. In addition to HI, days to heading and maturity, length of grain filling period, grain yield, test weight and 13 traits characterizing plant stand structure were measured and analysed with principal component analysis (PCA) to detect traits associated with HI and those contributing to stability of HI. Although only modern cereals were studied, differences among cultivars were significant both in mean HI and stability of HI, and HI was associated with short plant stature in all modern cereal species. Also, single grain weight was associated with HI in all species. Differences between, but not within, species in HI were partly attributable to differences in tiller performance. Grain yield was associated closely with HI except in two-row barley. It may be possible to further increase HI of wheat, as it still was relatively low. High HI did, however, not indicate the degree of success in yield determination when environments are compared.


Author(s):  
Amrita Kumari ◽  
R. D. Ranjan ◽  
Chandan Roy ◽  
Awadesh Kumar Pal ◽  
S. Kumar

Heat stress, particularly the stress appears at the time of flowering to grain filling stages causing severe yield loss in wheat. Heat tolerance is complex phenomena that include adjustment in morphological, physiological and biochemical traits of the crop. Present investigation was carried out to understand the effect of terminal heat stress on different traits of wheat. The experiment was conducted in three dates of sowing as timely sown, late sown and very late sown to expose the crop to heat stress at later stages of the crop growth. Significant genetic variations for all the traits evaluated under three conditions indicated the presence of variability for the traits. Trait association analysis revealed that flag leaf chlorophyll content and MSI at seedling stage; MDA at reproductive stage had direct relationship with grain yield. While under very late sown condition MDA and RWC at seedling stages were found to be highly correlated with grain yield. It indicates that MDA, RWC at seedling stage and days to booting, days to milking plays important role in very late sown condition that can be used as selection criteria in breeding programme.


2020 ◽  
Vol 12 (14) ◽  
pp. 5610
Author(s):  
Alireza Pour-Aboughadareh ◽  
Reza Mohammadi ◽  
Alireza Etminan ◽  
Lia Shooshtari ◽  
Neda Maleki-Tabrizi ◽  
...  

Durum wheat performance in the Mediterranean climate is limited when water scarcity occurs before and during anthesis. The present research was performed to determine the effect of drought stress on several physiological and agro-morphological traits in 17 durum wheat genotypes under two conditions (control and drought) over two years. The results of analysis of variance indicated that the various durum wheat genotypes responded differently to drought stress. Drought stress significantly reduced the grain filling period, plant height, peduncle length, number of spikes per plot, number of grains per spike, thousand grains weight, grain yield, biomass, and harvest index in all genotypes compared to the control condition. The heatmap-based correlation analysis indicated that grain yield was positively and significantly associated with phenological characters (days to heading, days to physiological maturity, and grain filling period), as well as number of spikes per plant, biomass, and harvest index under drought conditions. The yield-based drought and susceptible indices revealed that stress tolerance index (STI), geometric mean productivity (GMP), mean productivity (MP), and harmonic mean (HM) were positively and significantly correlated with grain yields in both conditions. Based on the average of the sum of ranks across all indices and a three-dimensional plot, two genotypes (G9 and G12) along with the control variety (G1) were identified as the most tolerant genotypes. Among the investigated genotypes, the new breeding genotype G12 showed a high drought tolerance and yield performance under both conditions. Hence, this genotype can be a candidate for further multi-years and locations test as recommended for cultivation under rainfed conditions in arid and semi-arid regions.


2020 ◽  
Vol 206 (6) ◽  
pp. 722-733 ◽  
Author(s):  
Siegfried Schittenhelm ◽  
Tina Langkamp‐Wedde ◽  
Martin Kraft ◽  
Lorenz Kottmann ◽  
Katja Matschiner

2002 ◽  
Vol 138 (2) ◽  
pp. 153-169 ◽  
Author(s):  
M. J. FOULKES ◽  
R. K. SCOTT ◽  
R. SYLVESTER-BRADLEY

Experiments in three dry years, 1993/94, 1994/95 and 1995/96, on a medium sand at ADAS Gleadthorpe, England, tested responses of six winter wheat cultivars to irrigation of dry-matter growth, partitioning of dry matter to leaf, stem and ear throughout the season, and to grain at final harvest. Cultivars (Haven, Maris Huntsman, Mercia, Rialto, Riband and Soissons) were selected for contrasts in flowering date and stem soluble carbohydrate. Maximum soil moisture deficit (SMD) exceeded 140 mm in all years, with large deficits (>75 mm) from early June in 1994 and from May in 1995 and 1996. The main effects of drought on partitioning of biomass were for a decrease in the proportion of the crop as lamina in the pre-flowering period, and then earlier retranslocation of stem reserves to grains during the first half of grain filling. Restricted water availability decreased grain yield by 1·83 t/ha in 1994 (P<0·05), and with more prolonged droughts, by 3·06 t/ha in 1995 (P<0·001) and by 4·55 t/ha in 1996 (P<0·001). Averaged over the three years, grain yield responses of the six cultivars differed significantly (P<0·05). Rialto and Mercia lost only 2·8 t/ha compared with Riband and Haven which lost 3·5 t/ha. Losses for Soissons and Maris Huntsman were intermediate. In the two years with prolonged drought, the biomass depression was on average greater for Haven (6·0 t/ha) than for Maris Huntsman (4·2 t/ha) (P<0·05). Thus, the grain yield sensitivity of Haven to drought derived, in part, from a sensitivity of biomass growth to drought. Harvest index (HI; ratio of grain to above-ground dry matter at harvest) responses of the six cultivars to irrigation also differed (P<0·05) and contributed to the yield responses. The smallest decrease in HI of the six cultivars with restricted water availability was shown by Rialto (−0·033); this partially explained the drought resistance for this cultivar. The largest decrease was for Maris Huntsman (−0·072). The cultivars differed in flowering dates by up to 9 days but these were poorly correlated with grain yield responses to irrigation. Stem soluble carbohydrate at flowering varied amongst cultivars from 220 to 300 g/m2 in the unirrigated crop; greater accumulation appeared to be associated with better maintenance of HI under drought. It is concluded that high stem-soluble carbohydrate reserves could be used to improve drought resistance in the UK's temperate climate, but that early flowering seems less likely to be useful.


Sign in / Sign up

Export Citation Format

Share Document