scholarly journals In vitro infection of Madin-Darby bovine kidney (MDBK) cells with Eimeria acervulina sporozoites: quantitative analysis of parasite cellular invasion and replication using real-time polymerase chain reaction (PCR)

Author(s):  
Shahinaz Taha ◽  
Tran Nguyen-Ho-Bao ◽  
Arwid Daugschies ◽  
Zaida Rentería-Solís

AbstractPoultry coccidiosis causes considerable economical losses to the livestock industry. Eimeria parasites are responsible for this disease. On a global scale, E. acervulina and E. tenella are amongst the most common Eimeria spp. infecting broilers. E. tenella is commonly used as infection model in in vivo and in vitro studies. On the other hand, E. acervulina has barely been studied under in vitro conditions. A well established and widely used in vitro model for E. tenella infection is the Madin-Darby bovine kidney cell line (MDBK); however, little is known regarding suitability of MDBK cells as host cells for E. acervulina. We infected MDBK monolayers with two different doses, 5 × 104 and 2 × 105, of E. acervulina sporozoites and evaluated cultures at 24 and 96 h post infection (hpi). For comparison, we ran an identical infection assay using E. tenella sporozoites. To assess parasite reproduction, the number of DNA copies of E. acervulina SCAR marker and E. tenella ITS-1 gene was quantified using real-time quantitative PCR. We found that the number of E. acervulina copies increased significantly at 24 hpi in comparison to E. tenella (p < 0.05). After 96 hpi, E. acervulina gene copies were considerably reduced while E. tenella continued to multiply (p < 0.05). Our results show that MDBK monolayers could be used for in vitro research aimed to study E. acervulina sporozoite cell invasion. Nevertheless, modifications of in vitro cultivation appear necessary to allow qualitative and quantitative studies over longer periods of parasite reproduction.

2022 ◽  
Vol 12 ◽  
Author(s):  
Shahbaz M. Khan ◽  
Xuejin Zhang ◽  
William H. Witola

Cryptosporidium parvum is a highly prevalent protozoan parasite that causes a diarrheal disease in humans and animals worldwide. Thus far, the moderately effective nitazoxanide is the only drug approved by the United States Food and Drug Administration for treating cryptosporidiosis in immunocompetent humans. However, no effective drug exists for the severe disease seen in young children, immunocompromised individuals and neonatal livestock. C. parvum lacks the Krebs cycle and the oxidative phosphorylation steps, making it dependent solely on glycolysis for metabolic energy production. Within its glycolytic pathway, C. parvum possesses two unique enzymes, the bacterial-type lactate dehydrogenase (CpLDH) and the plant-like pyruvate kinase (CpPyK), that catalyze two sequential steps for generation of essential metabolic energy. We have previously reported that inhibitors of CpLDH are effective against C. parvum, both in vitro and in vivo. Herein, we developed an in vitro assay for the enzymatic activity of recombinant CpPyK protein and used it to screen a chemical compound library for inhibitors of CpPyK’s activity. The identified inhibitors were tested (at non-toxic concentrations) for efficacy against C. parvum using in vitro assays, and an in vivo mouse infection model. We identified six CpPyK inhibitors that blocked in vitro growth and proliferation of C. parvum at low micromolar concentrations (EC50 values ranging from 10.29 to 86.01 μM) that were non-toxic to host cells. Among those six compounds, two (NSC252172 and NSC234945) were found to be highly efficacious against cryptosporidiosis in immunocompromised mice at a dose of 10 mg/kg body weight, with very significant reduction in parasite load and amelioration of intestinal pathologies. Together, these findings have unveiled inhibitors for an essential molecular target in C. parvum and demonstrated their efficacy against the parasite in vitro and in vivo. These inhibitors are, therefore, potential lead-compounds for developing efficacious treatments for cryptosporidiosis.


Author(s):  
Andrea L. Cathcart ◽  
Colin Havenar-Daughton ◽  
Florian A. Lempp ◽  
Daphne Ma ◽  
Michael Schmid ◽  
...  

ABSTRACTVIR-7831 and VIR-7832 are dual action monoclonal antibodies (mAbs) targeting the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). VIR-7831 and VIR-7832 were derived from a parent antibody (S309) isolated from memory B cells of a 2003 severe acute respiratory syndrome coronavirus (SARS-CoV) survivor. Both mAbs contain an “LS” mutation in the Fc region to prolong serum half-life and potentially enhance distribution to the respiratory mucosa. In addition, VIR-7832 encodes an Fc GAALIE mutation that has been shown previously to evoke CD8+ T-cells in the context of an in vivo viral respiratory infection. VIR-7831 and VIR-7832 potently neutralize live wild-type SARS-CoV-2 in vitro as well as pseudotyped viruses encoding spike protein from the B.1.1.7, B.1.351 and P.1 variants. In addition, they retain activity against monoclonal antibody resistance mutations that confer reduced susceptibility to currently authorized mAbs. The VIR-7831/VIR-7832 epitope does not overlap with mutational sites in the current variants of concern and continues to be highly conserved among circulating sequences consistent with the high barrier to resistance observed in vitro. Furthermore, both mAbs can recruit effector mechanisms in vitro that may contribute to clinical efficacy via elimination of infected host cells. In vitro studies with these mAbs demonstrated no enhancement of infection. In a Syrian Golden hamster proof-of concept wildtype SARS-CoV-2 infection model, animals treated with VIR-7831 had less weight loss, and significantly decreased total viral load and infectious virus levels in the lung compared to a control mAb. Taken together, these data indicate that VIR-7831 and VIR-7832 are promising new agents in the fight against COVID-19.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Igori Balta ◽  
Lavinia Stef ◽  
Ioan Pet ◽  
Patrick Ward ◽  
Todd Callaway ◽  
...  

Abstract The aim of this study was to test in vitro the ability of a mixture of citrus extract, maltodextrin, sodium chloride, lactic acid and citric acid (AuraShield L) to inhibit the virulence of infectious bronchitis, Newcastle disease, avian influenza, porcine reproductive and respiratory syndrome (PRRS) and bovine coronavirus viruses. Secondly, in vivo, we have investigated its efficacy against infectious bronchitis using a broiler infection model. In vitro, these antimicrobials had expressed antiviral activity against all five viruses through all phases of the infection process of the host cells. In vivo, the antimicrobial mixture reduced the virus load in the tracheal and lung tissue and significantly reduced the clinical signs of infection and the mortality rate in the experimental group E2 receiving AuraShield L. All these effects were accompanied by a significant reduction in the levels of pro-inflammatory cytokines and an increase in IgA levels and short chain fatty acids (SCFAs) in both trachea and lungs. Our study demonstrated that mixtures of natural antimicrobials, such AuraShield L, can prevent in vitro viral infection of cell cultures. Secondly, in vivo, the efficiency of vaccination was improved by preventing secondary viral infections through a mechanism involving significant increases in SCFA production and increased IgA levels. As a consequence the clinical signs of secondary infections were significantly reduced resulting in recovered production performance and lower mortality rates in the experimental group E2.


1999 ◽  
Vol 43 (9) ◽  
pp. 2268-2272 ◽  
Author(s):  
Andrei Kutlin ◽  
Patricia M. Roblin ◽  
Margaret R. Hammerschlag

ABSTRACT Chlamydia pneumoniae is a well-established cause of community-acquired pneumonia and bronchitis in adults and children. Chronic infections with C. pneumoniae have been implicated in the development of atherosclerosis and other diseases in humans. Methods currently used for the culture and propagation ofC. pneumoniae are not analogous to the infection as it occurs in vivo. We have established a model of continuous C. pneumoniae infection in vitro. HEp-2 cells inoculated with CM-1 and TW-183 strains have been persistently infected for periods of over 1.5 and 2 years, respectively. The cultures were maintained without centrifugation or the addition of cycloheximide, fresh host cells, or chlamydia. We observed cycles of host cell lysis, detachment, and regrowth with both strains of C. pneumoniae. Continuous C. pneumoniae infections may more closely resemble the actual events as they occur in vivo and, therefore, may be a better model for the in vitro study of C. pneumoniae infection. When we used continuously infected cells to determine the effects of azithromycin and ofloxacin on C. pneumoniae propagation in vitro, we found that both drugs reduced but did not completely eliminate the organism. This may be an important observation, as the failure of antibiotic therapy against C. pneumoniae infection in humans has been described.


Author(s):  
Matthew C. Martens ◽  
Yan Liu ◽  
Austin G. Sanford ◽  
Alexander I. Wallick ◽  
Rosalie C. Warner ◽  
...  

The apicomplexan parasite Toxoplasma gondii is the causative agent of toxoplasmosis, a globally distributed infection with severe clinical consequences for immunocompromised individuals and developing fetuses. There are few available treatments, and these are associated with potentially severe adverse effects. Marinopyrrole A, a compound discovered in a marine Streptomyces species, has previously been found to exhibit potent antimicrobial activity, prompting our interest in exploring efficacy against Toxoplasma gondii . We found that marinopyrrole A was a highly potent anti- Toxoplasma molecule, with an in vitro 50% maximal inhibitory concentration (IC 50 ) of 0.31 μM corresponding to a higher potency than that of the current standard of care (pyrimethamine); however, addition of 20% serum led to abrogation of potency, and toxicity to human cell lines was observed. Yet, application of marinopyrrole A to an in vivo lethal acute infection model facilitated significantly enhanced survival at doses of 5, 10, and 20 mg/kg. We then tested a series of marinopyrrole A analogs—RL002, RL003, and RL125—demonstrating significantly increased potency in vitro , with IC 50 values ranging from 0.09-0.17 μM (3.6-6.8X increase relative to pyrimethamine). No detectable cytotoxicity was observed up to 50 μM in human foreskin fibroblasts, with cytotoxicity in HepG2 cells ranging from ∼28-50 μM, corresponding to >200X selectivity for parasites over host cells. All analogs additionally showed reduced sensitivity to serum. Further, RL003 potently inhibited in vitro -generated bradyzoites at 0.245 μM. Taken together, these data support further development of marinopyrrole A analogs as promising anti- Toxoplasma molecules to further combat this prevalent infection.


2003 ◽  
Vol 71 (2) ◽  
pp. 882-890 ◽  
Author(s):  
Jagath L. Kadurugamuwa ◽  
Lin Sin ◽  
Eddie Albert ◽  
Jun Yu ◽  
Kevin Francis ◽  
...  

ABSTRACT We have developed a rapid, continuous method for real-time monitoring of biofilms, both in vitro and in a mouse infection model, through noninvasive imaging of bioluminescent bacteria colonized on Teflon catheters. Two important biofilm-forming bacterial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa, were made bioluminescent by insertion of a complete lux operon. These bacteria produced significant bioluminescent signals for both in vitro studies and the development of an in vivo model, allowing effective real-time assessment of the physiological state of the biofilms. In vitro viable counts and light output were parallel and highly correlated (S. aureus r = 0.98; P. aeruginosa r = 0.99) and could be maintained for 10 days or longer, provided that growth medium was replenished every 12 h. In the murine model, subcutaneous implantation of the catheters (precolonized or postimplant infected) was well tolerated. An infecting dose of 10 3 to 10 5 CFU/catheter for S. aureus and P. aeruginosa resulted in a reproducible, localized infection surrounding the catheter that persisted until the termination of the experiment on day 20. Recovery of the bacteria from the catheters of infected animals showed that the bioluminescent signal corresponded to the CFU and that the lux constructs were highly stable even after many days in vivo. Since the metabolic activity of viable cells could be detected directly on the support matrix, nondestructively, and noninvasively, this method is especially appealing for the study of chronic biofilm infections and drug efficacy studies in vivo.


2012 ◽  
Vol 81 (1) ◽  
pp. 154-165 ◽  
Author(s):  
Cristina Núñez-Hernández ◽  
Alberto Tierrez ◽  
Álvaro D. Ortega ◽  
M. Graciela Pucciarelli ◽  
Marta Godoy ◽  
...  

Genome-wide expression analyses have provided clues on howSalmonellaproliferates inside cultured macrophages and epithelial cells. However,in vivostudies show thatSalmonelladoes not replicate massively within host cells, leaving the underlying mechanisms of such growth control largely undefined.In vitroinfection models based on fibroblasts or dendritic cells reveal limited proliferation of the pathogen, but it is presently unknown whether these phenomena reflect events occurringin vivo. Fibroblasts are distinctive, since they represent a nonphagocytic cell type in whichS. entericaserovar Typhimurium actively attenuates intracellular growth. Here, we show in the mouse model thatS. Typhimurium restrains intracellular growth within nonphagocytic cells positioned in the intestinal lamina propria. This response requires a functional PhoP-PhoQ system and is reproduced in primary fibroblasts isolated from the mouse intestine. The fibroblast infection model was exploited to generate transcriptome data, which revealed that ∼2% (98 genes) of theS. Typhimurium genome is differentially expressed in nongrowing intracellular bacteria. Changes include metabolic reprogramming to microaerophilic conditions, induction of virulence plasmid genes, upregulation of the pathogenicity islands SPI-1 and SPI-2, and shutdown of flagella production and chemotaxis. Comparison of relative protein levels of several PhoP-PhoQ-regulated functions (PagN, PagP, and VirK) in nongrowing intracellular bacteria and extracellular bacteria exposed to diverse PhoP-PhoQ-inducing signals denoted a regulation responding to acidic pH. These data demonstrate thatS. Typhimurium restrains intracellular growthin vivoand support a model in which dormant intracellular bacteria could sense vacuolar acidification to stimulate the PhoP-PhoQ system for preventing intracellular overgrowth.


2020 ◽  
Author(s):  
Avik Sotira Scientific

UNSTRUCTURED Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome (SARS) caused by a virus known as SARS-Coronavirus 2 (SARS-CoV2). Without a targeted-medicine, this disease has been causing a massive humanitarian crisis not only in terms of mortality, but also imposing a lasting damage to social life and economic progress of humankind. Therefore, an immediate therapeutic strategy needs to be intervened to mitigate this global crisis. Here, we report a novel KepTide™ (Knock-End Peptide) therapy that nullifies SARS-CoV2 infection. SARS-CoV2 employs its surface glycoprotein “spike” (S-glycoprotein) to interact with angiotensin converting enzyme-2 (ACE-2) receptor for its infection in host cells. Based on our in-silico-based homology modeling study validated with a recent X-ray crystallographic structure (PDB ID:6M0J), we have identified that a conserved motif of S-glycoprotein that intimately engages multiple hydrogen-bond (H-bond) interactions with ACE-2 enzyme. Accordingly, we designed a peptide, termed as ACIS (ACE-2 Inhibitory motif of Spike), that displayed significant affinity towards ACE-2 enzyme as confirmed by biochemical assays such as BLItz and fluorescence polarization assays. Interestingly, more than one biochemical modifications were adopted in ACIS in order to enhance the inhibitory action of ACIS and hence called as KEpTide™. Consequently, a monolayer invasion assay, plaque assay and dual immunofluorescence analysis further revealed that KEpTide™ efficiently mitigated the infection of SARS-CoV2 in vitro in VERO E6 cells. Finally, evaluating the relative abundance of ACIS in lungs and the potential side-effects in vivo in mice, our current study discovers a novel KepTide™ therapy that is safe, stable, and robust to attenuate the infection of SARS-CoV2 virus if administered intranasally. INTERNATIONAL REGISTERED REPORT RR2-https://doi.org/10.1101/2020.10.13.337584


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chunhui Miao ◽  
Mingyu Yu ◽  
Geng Pei ◽  
Zhenyi Ma ◽  
Lisong Zhang ◽  
...  

AbstractHost cells use several anti-bacterial pathways to defend against pathogens. Here, using a uropathogenic Escherichia coli (UPEC) infection model, we demonstrate that bacterial infection upregulates RhoB, which subsequently promotes intracellular bacteria clearance by inducing LC3 lipidation and autophagosome formation. RhoB binds with Beclin 1 through its residues at 118 to 140 and the Beclin 1 CCD domain, with RhoB Arg133 being the key binding residue. Binding of RhoB to Beclin 1 enhances the Hsp90-Beclin 1 interaction, preventing Beclin 1 degradation. RhoB also directly interacts with Hsp90, maintaining RhoB levels. UPEC infections increase RhoB, Beclin 1 and LC3 levels in bladder epithelium in vivo, whereas Beclin 1 and LC3 levels as well as UPEC clearance are substantially reduced in RhoB+/− and RhoB−/− mice upon infection. We conclude that when stimulated by UPEC infections, host cells promote UPEC clearance through the RhoB-Beclin 1-HSP90 complex, indicating RhoB may be a useful target when developing UPEC treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document