Em14-3-3 delivered by PLGA and chitosan nanoparticles conferred improved protection in chicken against Eimeria maxima

Author(s):  
Muhammad Haseeb ◽  
Jianmei Huang ◽  
Shakeel Ahmed Lakho ◽  
Zhang Yang ◽  
Muhammad Waqqas Hasan ◽  
...  
2019 ◽  
Vol 38 (2) ◽  
pp. 385 ◽  
Author(s):  
Marwa M. El-Naggar ◽  
Wael S. I. Abou-Elmagd ◽  
Ashraf Suloma ◽  
Hamza A. El-Shabaka ◽  
Magdy T. Khalil ◽  
...  

Author(s):  
Sudhakar Sekar ◽  
Shee Sim May

The aim of the study is to formulate a modified release chitosan nanoparticles for the oral delivery of atorvastatin and to study the in vitro release of atorvastatin from chitosan nanoparticles. Atorvastatin-loaded chitosan nanoparticles were prepared with different concentration of cross-linking agent (glutaraldehyde) by emulsion interfacial reaction method. The formed nanoparticles were characterized in terms of size and morphological characteristics by scanning electron microscopy (SEM) and transmission electron microscope (TEM). Spherical and regular nanoparticles with the size range of 100-250nm were formed. Atorvastatin encapsulation efficiency of nanoparticles was found to be highest in ANP3, followed by ANP2 and ANP1. The in vitro release of atorvastatin was studied by membrane diffusion technique. The resulted cumulative percentage of drug released for ANP1, ANP2 and ANP3 were 60.08%, 34.81% and 20.39% respectively. Through this study, the nanoparticles preparation technique has shown to be a promising approach for enhancing the dissolution of hydrophobic drugs like atorvastatin calcium. The application of this novel delivery system offers good therapeutic potential in the management of hypercholesterolemia and dyslipidemia.


2019 ◽  
Vol 56 (2) ◽  
pp. 396-398
Author(s):  
Georgeta Zegan ◽  
Daniela Anistoroaei ◽  
Elena Mihaela Carausu ◽  
Eduard Radu Cernei ◽  
loredana Golovcencu

Amoxicillin and clavulanic acid are two of the most commonly prescribed antibacterial worldwide for treating oral infectious diseases. Oral health is of big importance for well-being and general health. A few novel drug delivery systems were designed for oral treatment and prophylaxis of different diseases in the oral cavity. This work focused on the latest drug delivery development of the most common oral pathologies, namely, periodontitis, oral mucosal infections, dental caries and oral cancer. Herein we reveal the synthesis, characterization and application of chitosan nanoparticles for intracellular transport of the weakly cell-penetrating amoxicillin and clavulanic acid in order to improve their efficacy on bacterial infections.


2020 ◽  
Vol 15 ◽  
Author(s):  
Manasi M. Chogale ◽  
Sujay S. Gaikwad ◽  
Savita P. Kulkarni ◽  
Vandana B. Patravale

Background: Tuberculosis (TB) continues to be among the leading causes for high mortality among developing countries. Though a seemingly effective treatment regimen against TB is in place, there has been no significant improvement in the therapeutic rates. This is primarily owing to the high drug doses, their associated sideeffects, and prolonged treatment regimen. Discontinuation of therapy due to the severe side effects of the drugs results in the progression of the infection to the more severe drug-resistant TB. Objectives: Reformulation of the current existing anti TB drugs into more efficient dosage forms could be an ideal way out. Nanoformulations have been known to mitigate the side effects of toxic, high-dose drugs. Hence, the current research work involves the formulation of Isoniazid (INH; a first-line anti TB molecule) loaded chitosan nanoparticles for pulmonary administration. Methods: INH loaded chitosan nanoparticles were prepared by ionic gelation method using an anionic crosslinker. Drugexcipient compatibility was evaluated using DSC and FT-IR. The formulation was optimized on the principles of Qualityby-Design using a full factorial design. Results: The obtained nanoparticles were spherical in shape having an average size of 620±10.97 nm and zeta potential +16.87±0.79 mV. Solid state characterization revealed partial encapsulation and amorphization of INH into the nanoparticulate system. In vitro release study confirmed an extended release of INH from the system. In vitro cell line based safety and efficacy studies revealed satisfactory results. Conclusion: The developed nanosystem is thus an efficient approach for antitubercular therapy.


2020 ◽  
Vol 14 (3) ◽  
pp. 210-224
Author(s):  
Gayatri Patel ◽  
Bindu K.N. Yadav

Background: The purpose of this study was to formulate, characterize and in-vitro cytotoxicity of 5-Fluorouracil loaded controlled release nanoparticles for the treatment of skin cancer. The patents on nanoparticles (US8414926B1), (US61654404A), (WO2007150075A3) etc. helped in the selection polymers and method for the preparation of nanoparticles. Methods: In the present study nanoparticles were prepared by simple ionic gelation method using various concentrations of chitosan and sodium tripolyphosphate (TPP). Several process and formulation parameters were screened and optimized using 25-2 fractional factorial design. The prepared nanoparticles were evaluated for particle size, shape, charge, entrapment efficiency, crosslinking mechanism and drug release study. Results: The optimized 5-Fluorouracil loaded nanoparticle were found with particle size of of 320±2.1 nm, entrapment efficiency of 85.12%± 1.1% and Zeta potential of 29mv±1mv. Scanning electron microscopy and dynamic light scattering technique revealed spherical particles with uniform size. The invitro release profile showed controlled release up to 24 hr. Further study was carried using A375 basal cell carcinoma cell-line to elucidate the mechanism of its cytotoxicity by MTT assay. Conclusion: These results demonstrate that the possibility of delivering 5-Fluorouracil to skin with enhanced encapsulation efficiency indicating effectiveness of the formulation for treatment of basal cell carcinoma type of skin cancer.


2019 ◽  
Vol 9 (2) ◽  
pp. 89-96
Author(s):  
Abbaraju Krishna Sailaja ◽  
Juveria Banu

Aim: The aim of this investigation was to develop and characterize naproxen loaded chitosan nanoparticles by emulsion interfacial reaction method. Methodology: For emulsion interfacial reaction method chitosan was used as a polymer. In this method, eight formulations were prepared by varying drug to polymer concentration. Discussion: Out of eight formulations prepared using emulsion interfacial reaction method EI8 formulation was found to be the best formulation. The drug content was observed as 94.4%, entrapment efficiency and loading capacity were found to be 87.5% and 75%, respectively. The mean particle diameter was measured as 324.6nm and the Zeta potential value was found to be -42.4mv. In vitro drug release data showed 97.2% of drug release rate sustained up to 12hrs. Conclusion: The results clearly reveal that EI8 formulation having the highest amount of drug was considered as the best formulation because of its small mean particle diameter, good entrapment efficiency, and stability.


2012 ◽  
Vol 2 (4) ◽  
pp. 281-289
Author(s):  
Rattan Lal ◽  
Rakesh Kumar Marwaha ◽  
Deepti Pandita ◽  
Harish Dureja

Sign in / Sign up

Export Citation Format

Share Document