Malignant Melanoma in Children and Congenital Melanocytic Nevi: DNA Content and Cell Cycle Analysis by Flow Cytometry

2001 ◽  
Vol 4 (1) ◽  
pp. 73-81 ◽  
Author(s):  
Antonio Alvarez-Mendoza ◽  
Jorge Reyes-Esparza ◽  
Ramon Ruiz-Maldonado ◽  
Eduardo Lopez-Corella ◽  
Norma C. Juarez-Herrera

Malignant melanoma (MM) in children, although a rare neoplasm, can occur within a preexisting congenital melanocytic nevus (CMN). All the potential risk factors for this phenomenon are not well known, but increases in S phase and G2 + M phase of cell cycle, DNA aneuploidy, and cell cycle abnormalities in precursor lesions might be among the risk factors. Using paraffin-embedded tissue, we performed a retrospective analysis of DNA content, aneuploidy, and cell cycle by flow cytometry. Two groups of patients were analyzed: 28 children with CMN who did not developed MM, and 6 patients who further developed MM. In this second group, three patients had four biopsies done before the appearance of MM and in two patients biopsies were done after the appearance of MM. All CMN not associated with MM exhibited diploid cells only, their S phase was 11.5% (± 3.8), and their G2 + M phase was 2.5% (± 2.2). Among those patients who developed MM, 3/6 had an S phase > 15.5 and a G2 + M phase > 2.3 prior to the appearance of MM. Two out of six patients had a tetraploid DNA when MM developed and died with a disseminated MM. They had an S phase > 15.5 and their G2 + M phase was > 2.5. We propose that evaluation of DNA content and cell cycle by flow cytometry is a useful method to supplement biopsy findings in children with CMN who have lesions suspicious of developing a MM.

2000 ◽  
Vol 278 (2) ◽  
pp. F209-F218 ◽  
Author(s):  
L. Michea ◽  
D. R. Ferguson ◽  
E. M. Peters ◽  
P. M. Andrews ◽  
M. R. Kirby ◽  
...  

We investigated the effects of hyperosmolality on survival and proliferation of subconfluent cultures of mIMCD3 mouse renal collecting duct cells. High NaCl and/or urea (but not glycerol) reduces the number of viable cells, as measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). Raising osmolality from a normal level (300 mosmol/kg) to 550–1,000 mosmol/kg by adding NaCl and/or urea greatly increases the proportion of cells in the G2M phase of the cell cycle within 8 h, as measured by flow cytometry. Up to 600 mosmol/kg the effect is only transient, and by 12 h at 550 mosmol/kg the effect reverses and most cells are in G1. Flow cytometry with 5-bromodeoxyuridine (BrdU) pulse-chase demonstrates that movement through the S phase of the cell cycle slows, depending on the concentrations of NaCl and/or urea, and that the duration of G2M increases greatly (from 2.5 h at 300 mosmol/kg to more than 16 h at the higher osmolalities). Addition of NaCl and/or urea to total osmolality of 550 mosmol/kg or more also induces apoptosis, as demonstrated by characteristic electron microscopic morphological changes, appearance of a subdiploid peak in flow cytometry, and caspase-3 activation. The number of cells with subdiploid DNA and activated caspase-3 peaks at 8–12 h. Caspase-3 activation occurs in all phases of the cell cycle, but to a disproportionate degree in G0/G1 and S phases. We conclude that elevated NaCl and/or urea reduces the number of proliferating mIMCD3 cells by slowing the transit through the S phase, by cell cycle delay in the G2M and G1, and by inducing apoptotic cell death.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e22538-e22538
Author(s):  
Inna Arnoldovna Novikova ◽  
Evgeniya M. Nepomnyashchaya ◽  
Timur Aliev ◽  
Elena Yurievna Zlatnik ◽  
Olesya N. Selyutina ◽  
...  

e22538 Background: The purpose of the study was to determine DNA content and distribution of cells in cell cycle phases by flow cytometry in patients with primary and recurrent soft tissue sarcomas. Methods: 60 patients with soft tissue sarcomas (STS) were recruited: 30 with primary tumors and 30 with recurrent ones. Mean age of patients with primary STS was 56±5.4 years, with recurrent STS – 55±6.7 years. DNA content was determined using the BD Facs Cantoo II flow cytometer with CycleTEST PLUS DNA Reagent Kit (Becton Dickinson). The data were processed using ModFit LT program. Results: Comparative analysis of the cell cycle kinetics showed an increase in the percentage of cells in G2+M phase by 2 times in diploid and by 2.1 times in aneuploid recurrent tumors in comparison with primary ones (1.8±0.5% vs. 0.9±0.1% for diploid tumors; 5.4±2.2% vs. 2.6±0.7% for aneuploid tumors). An increase in the percentage of aneuploid tumors was found in recurrent G2 and G3 tumors (from 50% in primary to 66.7% in recurrent G2 tumors and from 63.25% in primary to 85% in recurrent G3 tumors). Mean content of aneuploid cells in recurrent G2 tumors was 2.2 times higher (p≤0.05), while the differences in primary and recurrent G3 tumors were not significant. The percentage of aneuploid tumors depended on the disease stage and increased in stages IIb and III in recurrent tumors, compared to primary ones (from 37.5% to 71.4% in recurrent st. IIb; and from 65% in primary st. III to 72.7% in recurrences) (p≤0.05). Conclusions: DNA analysis by flow cytometry demonstrated a high biologic potential of both primary and recurrent tumors. Some values in the mitotic cycle in recurrent tumors were probably associated with adjuvant therapy, as well as influenced by the coefficient of two parameters – the percentage of cells in G2+M phase and the cell loss factor determining a high malignant potential of these tumors.


2000 ◽  
Vol 74 (19) ◽  
pp. 9152-9166 ◽  
Author(s):  
Grace Y. Lin ◽  
Robert A. Lamb

ABSTRACT Infection of cells by many viruses affects the cell division cycle of the host cell to favor viral replication. We examined the ability of the paramyxovirus simian parainfluenza virus 5 (SV5) to affect cell cycle progression, and we found that SV5 slows the rate of proliferation of HeLa T4 cells. The SV5-infected cells had a delayed transition from G1 to S phase and prolonged progression through S phase, and some of the infected cells were arrested in G2 or M phase. The levels of p53 and p21CIP1were not increased in SV5-infected cells compared to mock-infected cells, suggesting that the changes in the cell cycle occur through a p53-independent mechanism. However, the phosphorylation of the retinoblastoma protein (pRB) was delayed and prolonged in SV5-infected cells. The changes in the cell cycle were also observed in cells expressing the SV5 V protein but not in the cells expressing the SV5 P protein or the V protein lacking its unique C terminus (VΔC). The unique C terminus of the V protein of SV5 was shown previously to interact with DDB1, which is the 127-kDa subunit of the multifunctional damage-specific DNA-binding protein (DDB) heterodimer. The coexpression of DDB1 with V can partially restore the changes in the cell cycle caused by expression of the V protein.


2000 ◽  
Vol 20 (8) ◽  
pp. 2794-2802 ◽  
Author(s):  
Neptune Mizrahi ◽  
Claire Moore

ABSTRACT The poly(A) polymerase of the budding yeast Saccharomyces cerevisiae (Pap1) is a 64-kDa protein essential for the maturation of mRNA. We have found that a modified Pap1 of 90 kDa transiently appears in cells after release from α-factor-induced G1 arrest or from a hydroxyurea-induced S-phase arrest. While a small amount of modification occurs in hydroxyurea-arrested cells, fluorescence-activated cell sorting analysis and microscopic examination of bud formation indicate that the majority of modified enzyme is found at late S/G2 and disappears by the time cells have reached M phase. The reduction of the 90-kDa product upon phosphatase treatment indicates that the altered mobility is due to phosphorylation. A preparation containing primarily the phosphorylated Pap1 has no poly(A) addition activity, but this activity is restored by phosphatase treatment. A portion of Pap1 is also polyubiquitinated concurrent with phosphorylation. However, the bulk of the 64-kDa Pap1 is a stable protein with a half-life of 14 h. The timing, nature, and extent of Pap1 modification in comparison to the mitotic phosphorylation of mammalian poly(A) polymerase suggest an intriguing difference in the cell cycle regulation of this enzyme in yeast and mammalian systems.


2020 ◽  
Author(s):  
Gee In Jung ◽  
Kunsoo Rhee

ABSTRACTCancer cells frequently include supernumerary centrioles. Here, we generated TP53;PCNT;CEP215 triple knockout cell lines and observed precocious separation and amplification of the centrioles at M phase. Many of the triple KO cells maintained supernumerary centrioles throughout the cell cycle. The M-phase-assembled centrioles lack an ability to function as templates for centriole assembly during S phase. They also lack an ability to organize microtubules in interphase. However, we found that a fraction of them acquired an ability to organize microtubules during M phase. Our works provide an example how supernumerary centrioles behave in dividing cells.


1999 ◽  
Vol 112 (6) ◽  
pp. 939-946 ◽  
Author(s):  
C.R. Carlson ◽  
B. Grallert ◽  
T. Stokke ◽  
E. Boye

Cells of Schizosaccharomyces pombe were grown in minimal medium with different nitrogen sources under steady-state conditions, with doubling times ranging from 2.5 to 14 hours. Flow cytometry and fluorescence microscopy confirmed earlier findings that at rapid growth rates, the G1 phase was short and cell separation occurred at the end of S phase. For some nitrogen sources, the growth rate was greatly decreased, the G1 phase occupied 30–50% of the cell cycle, and cell separation occurred in early G1. In contrast, other nitrogen sources supported low growth rates without any significant increase in G1 duration. The method described allows manipulation of the length of G1 and the relative cell cycle position of S phase in wild-type cells. Cell mass was measured by flow cytometry as scattered light and as protein-associated fluorescence. The extensions of G1 were not related to cell mass at entry into S phase. Our data do not support the hypothesis that the cells must reach a certain fixed, critical mass before entry into S. We suggest that cell mass at the G1/S transition point is variable and determined by a set of molecular parameters. In the present experiments, these parameters were influenced by the different nitrogen sources in a way that was independent of the actual growth rate.


Development ◽  
1999 ◽  
Vol 126 (2) ◽  
pp. 293-303 ◽  
Author(s):  
K.J. Dej ◽  
A.C. Spradling

Polytene chromosomes exhibit intricate higher order chromatin structure that is easily visualized due to their precisely aligned component strands. However, it remains unclear if the same factors determine chromatin organization in polyploid and diploid cells. We have analyzed one such factor, the cell cycle, by studying changes in Drosophila nurse cell chromosomes throughout the 10 to 12 endocycles of oogenesis. We find that nurse cells undergo three distinct types of endocycle whose parameters are correlated with chromosome behavior. The first four endocycles support complete DNA replication; poorly banded polytene euchromatin progressively condenses during the late S phases to produce blob-like chromosomes. During the unique fifth endocycle, an incomplete late S phase is followed by a mitosis-like state during which the 64C chromosomes dissociate into 32 chromatid pairs held together by unreplicated regions. All the subsequent endocycles lack any late S phase; during these cycles a new polytene chromosome grows from each 2C chromatid pair to generate 32-ploid polytene nuclei. These observations suggest that euchromatin begins to condense during late S phase and that nurse cell polytene chromosome structure is controlled by regulating whether events characteristic of late S and M phase are incorporated or skipped within a given endocycle.


1983 ◽  
Vol 38 (3-4) ◽  
pp. 313-318 ◽  
Author(s):  
Rainer Merz ◽  
Friedhelm Schneider

Utilizing centrifugal elutriation, early and late S-phase cells were separated from 4, 8 and 12 h anaerobically cultured Ehrlich Ascites tumor cells strain Karzel. The cytokinetic properties of these fractions after reaeration were studied by flow cytometry and the BrdU-H 33258-technique of flow cytometry. After a 4 h period of anaerobiosis, growth of early S-phase cells is not changed, 8 h deprivation of oxygen causes a delay of cell cycle progression, while the main fraction of 12 h anaerobically treated early S-populations did not divide after reaeration within 24 h. In comparison to early S-phase cells the cell cycle progression of the main fraction of late S-period is accelerated after a 4 h exclusion of oxygen. A fraction of 8 h anaerobically pretreated late S-cells continues to cycle, but a considerable number reinitiates DNA synthesis without preceeding division. Cells with DNA content up to 8 c are detected by flow cytometry. 12 h anaerobically cultured late S-cells do not divide after reaeration, a large number of these cells starts again to synthesize DNA. A considerable part of tetraploid cells retain viability, divide and enter a new cell cycle, another part of the cells disintegrates


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hiroaki Shimono ◽  
Atsushi Kaida ◽  
Hisao Homma ◽  
Hitomi Nojima ◽  
Yusuke Onozato ◽  
...  

AbstractIn this study, we examined the fluctuation in radioresponse of HeLa cells during the cell cycle. For this purpose, we used HeLa cells expressing two types of fluorescent ubiquitination-based cell cycle indicators (Fucci), HeLa-Fucci (CA)2 and HeLa-Fucci (SA), and combined this approach with the micronucleus (MN) assay to assess radioresponse. The Fucci system distinguishes cell cycle phases based on the colour of fluorescence and cell morphology under live conditions. Time-lapse imaging allowed us to further identify sub-positions within the G1 and S phases at the time of irradiation by two independent means, and to quantitate the number of MNs by following each cell through M phase until the next G1 phase. Notably, we found that radioresponse was low in late G1 phase, but rapidly increased in early S phase. It then decreased until late S phase and increased in G2 phase. For the first time, we demonstrated the unique fluctuation of radioresponse by the MN assay during the cell cycle in HeLa cells. We discuss the difference between previous clonogenic experiments using M phase-synchronised cell populations and ours, as well as the clinical implications of the present findings.


2013 ◽  
Vol 87 (23) ◽  
pp. 12766-12775 ◽  
Author(s):  
Yong Luo ◽  
Steve Kleiboeker ◽  
Xuefeng Deng ◽  
Jianming Qiu

Human parvovirus B19 (B19V) infection has a unique tropism to human erythroid progenitor cells (EPCs) in human bone marrow and the fetal liver. It has been reported that both B19V infection and expression of the large nonstructural protein NS1 arrested EPCs at a cell cycle status with a 4 N DNA content, which was previously claimed to be “G2/M arrest.” However, a B19V mutant infectious DNA (M20mTAD2) replicated well in B19V-semipermissive UT7/Epo-S1 cells but did not induce G2/M arrest (S. Lou, Y. Luo, F. Cheng, Q. Huang, W. Shen, S. Kleiboeker, J. F. Tisdale, Z. Liu, and J. Qiu, J. Virol.86:10748–10758, 2012). To further characterize cell cycle arrest during B19V infection of EPCs, we analyzed the cell cycle change using 5-bromo-2′-deoxyuridine (BrdU) pulse-labeling and DAPI (4′,6-diamidino-2-phenylindole) staining, which precisely establishes the cell cycle pattern based on both cellular DNA replication and nuclear DNA content. We found that although both B19V NS1 transduction and infection immediately arrested cells at a status of 4 N DNA content, B19V-infected 4 N cells still incorporated BrdU, indicating active DNA synthesis. Notably, the BrdU incorporation was caused neither by viral DNA replication nor by cellular DNA repair that could be initiated by B19V infection-induced cellular DNA damage. Moreover, several S phase regulators were abundantly expressed and colocalized within the B19V replication centers. More importantly, replication of the B19V wild-type infectious DNA, as well as the M20mTAD2mutant, arrested cells at S phase. Taken together, our results confirmed that B19V infection triggers late S phase arrest, which presumably provides cellular S phase factors for viral DNA replication.


Sign in / Sign up

Export Citation Format

Share Document