scholarly journals An integrated DEM–FEM approach to study breakage in packing of glass cartridges on a conveyor belt

2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Daniela Paola Boso ◽  
Tommaso Braga ◽  
Simone Ravasini ◽  
Tatjana Škrbić ◽  
Andrea Puglisi ◽  
...  

Abstract The use of glass for pharmaceutical new applications such as high-technology drugs, requires the strictest container inertness. A common theme of paramount importance in glass container integrity preservation is the detailed mechanism driving the sudden failure due the crack propagation. Using a combination of discrete element method (DEM) and finite element method (FEM), a stress map for glass cartridges packed into an accumulation table and transported by a conveyor belt at a fixed velocity is obtained under realistic conditions. The DEM calculation provides a full description of the dynamics of the cartridges, as approximated by an equivalent sphere, as well as the statistics of the multiple collisions. The FEM calculation exploits this input to provide the maximum principal stress of different pairs as a function of time. Our analysis shows that, during their transportation on the conveyor belt, the cartridges are subject to several shocks of varying intensities. Under these conditions, a crack may originate inside the cartridge in the area of maximal tensile stress, and propagate outward. Estimated stresses are found in good agreement with real systems. Graphic abstract

Author(s):  
W M G Malalasekera ◽  
F Lockwood

A mathematical model has been applied to simulate model experiments of the 1987 King's Cross underground fire by the Department of Health and Safety Executive. The predicted growth of the fire is compared with the experimental data and in particular the predicted and measured times to ‘flashover’ are compared. The comparisons show exceptional agreement which, in part, may be fortuitous due to the need to facilitate the prediction of the early stages of the growth with the aid of an experimentally estimated fire strength. The good agreement nonetheless is also due to the full description of the radiation transfer which is a feature of the mathematical model. It is concluded that the flashover phenomenon that occurred at King's Cross was thermal radiation driven and that future research should be devoted to modelling the details of fire spread across a combustible surface.


Author(s):  
Bartosz Łuczak ◽  
Bartosz Firlik ◽  
Tomasz Staśkiewicz ◽  
Wojciech Sumelka

In tram operations, flange wear is predominant due to the low-radius curves and inappropriate technical conditions of the infrastructure; hence, investigations should be focused on the interaction between the wheel flange and the rail gauge corner. Moreover, the calculation methods based on the Hertzian model (elliptic contact patch) provide less accurate results due to the contact occurrence in the wheel flange region. This paper presents a methodology of a finite element method to predict the tram wheel wear in complex motions. The new procedure is based on the Abaqus software and several other sub-procedures written in Python and Fortran. Multibody simulations were used to determine the wheel–rail alignment. In this method, accuracy was chosen at the expense of the computational effort. The main steps are: preparation of models and ride scenarios, multibody simulation for calculating the wheel–rail alignment for different track scenarios and multiple runs of finite element method analysis to determine the wear magnitude. The proposed methodology presents a good agreement with the measurements and can be considered as guidelines for a proper configuration of the flange-designing experimental setup where the influence of the technical conditions of the infrastructure should be introduced adequately.


1975 ◽  
Vol 10 (3) ◽  
pp. 167-171 ◽  
Author(s):  
F Ginesu ◽  
B Picasso ◽  
P Priolo

Results on the plastic collapse behaviour of an axisymmetric rotating shell, obtained by Limit Analysis and the Finite Element Method, are in good agreement with experimental data. The Finite Element Method, though computationally rather costly, permits, however, a more complete analysis of elasto-plastic behaviour. For the present case, the Limit Analysis has the advantage of greater computational simplicity and leads to a quite satisfactory forecast of collapse speed from the engineering point of view.


PAMM ◽  
2008 ◽  
Vol 8 (1) ◽  
pp. 10003-10006
Author(s):  
Piotr Fedelinski ◽  
Radoslaw Gorski ◽  
Tomasz Czyz ◽  
Grzegorz Dziatkiewicz

2011 ◽  
Vol 480-481 ◽  
pp. 634-638
Author(s):  
Shao Feng Zeng ◽  
Wen Zhe Chen

In this study AZ31 sheet with a thickness of 1.2mm and diameter of 52mm was simulated to press into a dish by a finite element method(FEM) software, which to obtain better processing of plastics forming of magnesium alloy by varying die parameters. In order to find the way of development on drawing property and to formulate the rational stamping processing, simulations have been applied on the maximum principal stress various with round radius of dent die and round radius of punch and die gap. Simulation results show that: to obtain a dish of 29mm diameter, a sheet of AZ31 magnesium with a thickness of 1.2mm and diameter of 52mm has been drawn, the fracture occurring at the corner of dish wall bottom. the ability of drawing varies with the round radius of dent die, which better radius is 3.8 mm. In the same way better round radius of punch is 3.0 mm, while better half gap is 1.8mm. Experiments also show that high diameter ratio has been increased with the various of die parameters and forming ability of material has been developed. It is reliable of simulation of finite element method.


2021 ◽  
Vol 50 (02) ◽  
Author(s):  
NGOC THAI HUYNH ◽  
CONG RO HOANG ◽  
TRUNG KIEN TRAN ◽  
VAN HOAI LE

The investigation analyzes effects of clearance size in revolute and spherical joints with clearance on rigid-flexible dynamic of a space slider crank mechanism by finite element method. The model of the mechanism was designed by Solidworks and then velocity, acceleration, displacement, stress and contact force were determined by finite element analysis of rigid-transient dynamic in ANSYS. The results simulation indicated that the clearance size in revolute and spherical with clearance has sightly effected on the velocity of the slider, but has significantly effected on acceleration, contact force as journal and ball impact into bearing and socket with high peaks of acceleration and contact force as presented in the graph of acceleration and contact forces. The graph outlined that journal and ball motion with three types: free light, contact and impact motion. Clearance size created deviation for the displacement of the slider from 4.29 mm to 9.87 mm and maximum principal stress increases from 8.4 MPa to 10 MPa when clearance size increases from 0 mm to 0.3 mm.


Author(s):  
Jefferson Talledo

Die crack is a common problem in the semiconductor industry and being able to predict the breaking force at a given loading condition could help prevent such crack problem. This paper presents the use of mechanical simulation in predicting the force at which the silicon die breaks in semiconductor package assembly process. A computer simulation with finite element analysis (FEA) technique was used. The applied force or displacement in a die bending simulation with 3 mm, 4 mm and 15 mm support span was varied until the resulting maximum principal stress of the die becomes equal to its fracture strength. Results revealed that the breaking force for the 70 µm die with 6 mm width is around 5 N for the 3 mm support span and only around 1 N for the 15 mm support span. With the good agreement between modeling and actual results, the study showed that mechanical simulation is an effective approach in predicting die breaking force and can be used to simulate different mechanical loads in the package assembly where possible die crack could happen and be avoided. This is a fast and cost-effective way of assessing risk of die crack and obtaining package assembly process parameters and specifications that are safe to the silicon die.


2018 ◽  
Vol 3 (1) ◽  
pp. 01
Author(s):  
Nassima M ziou ◽  
Hani Benguesmia ◽  
Hilal Rahali

The electrical effects can be written by two magnitudes the field and the electrostatic potential, for the determination of the distribution of the field and the electric potential along the leakage distance of the polluted insulator, the comsol multiphysics software based on the finite element method will be used. The objective of this paper is the modeling electric field and potential distribution in Two Dimensions by the Finite Element Method on a model of insulator simulating the 1512L outdoor insulator used by the Algerian company of electricity and gas (SONELGAZ). This model is under different conductivity, applied voltage, position of clean layer and width of clean layer. The computer simulations are carried out by using the COMSOL multiphysics software. This paper describes how Comsol Multiphysics have been used for modeling of the insulator using electrostatic 2D simulations in the AC/DC module. Numerical results showed a good agreement.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
C. Mahesh ◽  
K. Govindarajulu ◽  
V. Balakrishna Murthy

Finite element method is effectively used to homogenize the thermal conductivity of FRP composites consisting of hybrid materials and fibre-matrix debonds at some of the fibres. The homogenized result at microlevel is used to determine the property of the layer using macromechanics principles; thereby, it is possible to minimize the computational efforts required to solve the problem as in state through only micromechanics approach. The working of the proposed procedure is verified for three different problems: (i) hybrid composite having two different fibres in alternate layers, (ii) fibre-matrix interface debond in alternate layers, and (iii) fibre-matrix interface debond at one fibre in a group of four fibres in one unit cell. It is observed that the results are in good agreement with those obtained through pure micro-mechanics approach.


2012 ◽  
Vol 09 (01) ◽  
pp. 1240006 ◽  
Author(s):  
SHANGMING LI

A unified scaled boundary finite element method (SBFEM) in the frequency domain was proposed for a semi-infinite reservoir with uniform cross section subjected to horizontal and vertical ground excitations, and a methodology was presented to solve the unified SBFEM through decomposing the unified SBFEM into two parts; one part modeling the reservoir subjected to horizontal excitations and the other part modeling the whole reservoir subjected to vertical excitations. The accuracy of the unified SBFEM and its solving methodology was validated through analyzing numerical examples. The SBFEM solutions were in good agreement with analytical or other numerical method's solutions.


Sign in / Sign up

Export Citation Format

Share Document