A facile one-step way for extraction of nanocellulose with high yield by ball milling with ionic liquid

Cellulose ◽  
2017 ◽  
Vol 24 (5) ◽  
pp. 2083-2093 ◽  
Author(s):  
Patchiya Phanthong ◽  
Surachai Karnjanakom ◽  
Prasert Reubroycharoen ◽  
Xiaogang Hao ◽  
Abuliti Abudula ◽  
...  
2020 ◽  
Vol 17 (8) ◽  
pp. 628-630
Author(s):  
Vu Binh Duong ◽  
Pham Van Hien ◽  
Tran Thai Ngoc ◽  
Phan Dinh Chau ◽  
Tran Khac Vu

A simple and practical method for the synthesis on a large scale of altretamine (1), a wellknown antitumor drug, has been successfully developed. The synthesis method involves the conversion of cyanuric chloride (2) into altretamine (1) by dimethylamination of 2 with an aqueous solution of 40% dimethylamine and potassium hydroxide in 1, -dioxan 4in one step to give altretamine (1) in high yield.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1502
Author(s):  
Johannes M. Parikka ◽  
Karolina Sokołowska ◽  
Nemanja Markešević ◽  
J. Jussi Toppari

The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices.


2014 ◽  
Vol 2 (36) ◽  
pp. 7477-7481 ◽  
Author(s):  
Xinwei Dong ◽  
Yanjie Su ◽  
Huijuan Geng ◽  
Zhongli Li ◽  
Chao Yang ◽  
...  

N-doped CDs can be obtained directly with high yield by pyrolyzing ethanolamine in air within just 7 minutes with the assistance of hydrogen peroxide.


2020 ◽  
Vol 44 (31) ◽  
pp. 13301-13307
Author(s):  
Wei Qi ◽  
Mengjie Li ◽  
Long Zhao

The fabrication of PL SiC-QDs by using ionic liquid-based microemulsions combined with electron beam radiation.


2012 ◽  
Vol 15 (2) ◽  
Author(s):  
Mohammad Hossein Habibi ◽  
Maryam Mikhak

AbstractNanostructured zinc titanate (NZT) was synthesized in high yield via a one-step and template-free sol-gel route. The prepared nanocomposite exhibited good size uniformity and regularity. The enhanced photocatalytic activity of the NZT was evaluated in the degradation and mineralization of Indocorn Brilliant Red (M5B) under metal halide lamp irradiation. The effects of different parameters such as pH of the solution, and initial dye concentration on photodegradation of M5B were analyzed. The degradation of M5B follows pseudo-first order kinetics according to the Langmuir-Hinshelwood model. The experimental results showed that the initial concentration of azo dye in the dye mixture greatly affected the degradation efficiency. At M5B concentrations of 10 mg/L, the optimum conditions for the highest degradation efficiency (94%) of azo dye were a photocatalyst dosage of 0.01 g/L and an initial solution pH of 9. This study provided new insight into the design and preparation of nanomaterial demonstrated an excellent ability to remove organic pollutants in wastewater.


2019 ◽  
Vol 238 ◽  
pp. 147-150 ◽  
Author(s):  
Dongmei Ma ◽  
Huanhuan Liu ◽  
Jiao Huang ◽  
Junbo Zhong ◽  
Jianzhang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document