Black carrot anthocyanins exhibit neuroprotective effects against MPP+ induced cell death and cytotoxicity via inhibition of oxidative stress mediated apoptosis

2021 ◽  
Author(s):  
Merve Zaim ◽  
Ihsan Kara ◽  
Aynur Muduroglu
Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 539
Author(s):  
Santa Cirmi ◽  
Alessandro Maugeri ◽  
Giovanni Enrico Lombardo ◽  
Caterina Russo ◽  
Laura Musumeci ◽  
...  

Parkinson’s disease (PD) is a degenerative disorder of the nervous system due to unceasing impairment of dopaminergic neurons situated in the substantia nigra. At present, anti-PD drugs acting on dopamine receptors are mainly symptomatic and have only very limited neuroprotective effects, whereas drugs slowing down neurodegeneration of dopaminergic neurons and deterioration of clinical symptoms are not yet available. Given that, the development of more valuable pharmacological strategies is highly demanded. Comprehensive research on innovative neuroprotective drugs has proven that anti-inflammatory and antioxidant molecules from food sources may prevent and/or counteract neurodegenerative diseases, such as PD. The present study was aimed at the evaluation the protective effect of mandarin juice extract (MJe) against 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y human neuroblastoma cell death. Treatment of differentiated SH-SY5Y cells with 6-OHDA brought cell death, and specifically, apoptosis, which was significantly inhibited by the preincubation with MJe through caspase 3 blockage and the modulation of p53, Bax, and Bcl-2 genes. In addition, it showed antioxidant properties in abiotic models as well as in vitro, where it reduced both reactive oxygen and nitrogen species induced by 6-OHDA, along with restored mitochondrial membrane potential, and prevented the oxidative DNA damage evoked by 6-OHDA. Furthermore, MJe restored the impaired balance of SNCA, LRRK2, PINK1, parkin, and DJ-1 gene levels, PD-related factors, caused by 6-OHDA oxidative stress. Overall, these results indicate that MJe exerts neuroprotective effects against 6-OHDA-induced cell death in SH-SY5Y cells by mechanisms involving both the specific interaction with intracellular pathways and its antioxidant capability. Our study suggests a novel possible strategy to prevent and/or ameliorate neurodegenerative diseases, such as PD.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ji-Ning Jia ◽  
Xi-Xi Yin ◽  
Qin Li ◽  
Qi-Wen Guan ◽  
Nan Yang ◽  
...  

Epilepsy is a complex neurological disorder characterized by recurrent and unprovoked seizures. Neuronal death process is implicated in the development of repetitive epileptic seizures. Therefore, cell death can be harnessed for ceasing seizures and epileptogenesis. Oxidative stress is regarded as a contributing factor of neuronal death activation and there is compelling evidence supporting antioxidants hold promise in abrogating seizure-related cell modality. Lapatinib, a well-known anti-cancer drug, has been traditionally reported to exert anti-tumor effect via modulating oxidative stress and a recent work illustrates the improvement of encephalomyelitis in rodent models after lapatinib treatment. However, whether lapatinib is beneficial for inhibiting neuronal death and epileptic seizure remains unknown. Here, we found that lapatinib remarkably prevented kainic acid (KA)-epileptic seizures in mice and ferroptosis, a newly defined cell death which is associated with oxidative stress, was involved in the neuroprotection of lapatinib. In the ferroptotic cell death model, lapatinib exerted neuroprotection via restoring glutathione peroxidase 4 (GPX4). Treatment with GPX4 inhibitor ras-selective lethal small molecule 3 (RSL3) abrogated its anti-ferroptotic potential. In a mouse model of KA-triggered seizure, it was also validated that lapatinib blocked GPX4-dependent ferroptosis. It is concluded that lapatinib has neuroprotective potential against epileptic seizures via suppressing GPX4-mediated ferroptosis.


2021 ◽  
Vol 11 (12) ◽  
pp. 5654
Author(s):  
Miey Park ◽  
So-Hyeun Kim ◽  
Hae-Jeung Lee

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the accumulation of β-amyloid plaques and hyperphosphorylated tau proteins in the brain. Cell signaling pathways such as PI3K/Akt are known to play an essential role in regulating cell survival, motility, transcription, metabolism, and progression of the cell cycle. Recent studies demonstrated that the disruption of these signaling pathways in neurodegenerative disorders leads to oxidative stress and cell death. Targeting these altered signaling pathways could be considered as the therapeutic approach for neurodegenerative disorders. Ginsenoside Rh1 is known to provide beneficial effects in various diseases such as cancer, diabetes, and inflammation. In this study, human neuroblastoma SH-SY5Y cells were treated with the β-amyloid oligomers alone or in combination with ginsenoside Rh1. We observed that ginsenoside Rh1 was able to attenuate β-amyloid induced oxidative stress and cell death by activating the PI3K/Akt signaling pathway. Based on these findings, we suggest that ginsenoside Rh1 might be an efficacious therapeutic agent for AD.


2018 ◽  
Vol 19 (10) ◽  
pp. 3252 ◽  
Author(s):  
Yan-Rou Tsai ◽  
Cheng-Fu Chang ◽  
Jing-Huei Lai ◽  
John Wu ◽  
Yen-Hua Chen ◽  
...  

Due to its high oxygen demand and abundance of peroxidation-susceptible lipid cells, the brain is particularly vulnerable to oxidative stress. Induced by a redox state imbalance involving either excessive generation of reactive oxygen species (ROS) or dysfunction of the antioxidant system, oxidative stress plays a central role in a common pathophysiology that underpins neuronal cell death in acute neurological disorders epitomized by stroke and chronic ones such as Alzheimer’s disease. After cerebral ischemia, for example, inflammation bears a key responsibility in the development of permanent neurological damage. ROS are involved in the mechanism of post-ischemic inflammation. The activation of several inflammatory enzymes produces ROS, which subsequently suppress mitochondrial activity, leading to further tissue damage. Pomalidomide (POM) is a clinically available immunomodulatory and anti-inflammatory agent. Using H2O2-treated rat primary cortical neuronal cultures, we found POM displayed neuroprotective effects against oxidative stress and cell death that associated with changes in the nuclear factor erythroid derived 2/superoxide dismutase 2/catalase signaling pathway. POM also suppressed nuclear factor kappa-light-chain-enhancer (NF-κB) levels and significantly mitigated cortical neuronal apoptosis by regulating Bax, Cytochrome c and Poly (ADP-ribose) polymerase. In summary, POM exerted neuroprotective effects via its anti-oxidative and anti-inflammatory actions against H2O2-induced injury. POM consequently represents a potential therapeutic agent against brain damage and related disorders and warrants further evaluation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anne Christmann ◽  
Manuela Gries ◽  
Patrik Scholz ◽  
Pascal L. Stahr ◽  
Jessica Ka Yan Law ◽  
...  

Abstract Motoric disturbances in Parkinson’s disease (PD) derive from the loss of dopaminergic neurons in the substantia nigra. Intestinal dysfunctions often appear long before manifestation of neuronal symptoms, suggesting a strong correlation between gut and brain in PD. Oxidative stress is a key player in neurodegeneration causing neuronal cell death. Using natural antioxidative flavonoids like Rutin, might provide intervening strategies to improve PD pathogenesis. To explore the potential effects of micro (mRutin) compared to nano Rutin (nRutin) upon the brain and the gut during PD, its neuroprotective effects were assessed using an in vitro PD model. Our results demonstrated that Rutin inhibited the neurotoxicity induced by A53T α-synuclein (Syn) administration by decreasing oxidized lipids and increasing cell viability in both, mesencephalic and enteric cells. For enteric cells, neurite outgrowth, number of synaptic vesicles, and tyrosine hydroxylase positive cells were significantly reduced when treated with Syn. This could be reversed by the addition of Rutin. nRutin revealed a more pronounced result in all experiments. In conclusion, our study shows that Rutin, especially the nanocrystals, are promising natural compounds to protect neurons from cell death and oxidative stress during PD. Early intake of Rutin may provide a realizable option to prevent or slow PD pathogenesis.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2057
Author(s):  
Suwei Tang ◽  
Lingli Yang ◽  
Yasutaka Kuroda ◽  
Sylvia Lai ◽  
Shaoqiong Xie ◽  
...  

Sanqi, a traditional Chinese herb, is widely used for cardiovascular diseases, and its neuroprotective effects against oxidative stress were recently discovered. The purpose of this study was to investigate whether Sanqi-derived compound K (Sanqi-CK), an active metabolite of Sanqi, could protect melanocytes from oxidative stress. Cultured human primary skin epidermal melanocytes (HEMn-MPs) were treated with hydrogen peroxide (H2O2) in the presence or absence of Sanqi-CK. Sanqi-CK exhibited protective effects against H2O2-induced cell death by reducing oxidative stress. In addition, treatment with Sanqi-CK reversed the decreased glutathione reductase activity and decreased ratio of reduced glutathione (GSH)/oxidized glutathione (GSSG) seen in H2O2-treated melanocytes. Furthermore, topical application of Sanqi-CK alleviated leukoderma in guinea pigs, a disorder characterized by melanocyte cell death resulting from rhododendrol-induced oxidative stress. Taken together, these data suggest that Sanqi-CK protects melanocytes against oxidative stress, and its protective effects are associated with modulating the redox balance between GSH and GSSG and activating glutathione reductase. Thus, Sanqi-CK may be a good candidate for preventing melanocyte loss in oxidative-stress-associated pigmentary disorders.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Abdelkader Basli ◽  
Stéphanie Soulet ◽  
Nassima Chaher ◽  
Jean-Michel Mérillon ◽  
Mohamed Chibane ◽  
...  

There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson’s or Alzheimer’s diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Hui-Min Yap ◽  
Kwan-Liang Lye

Nervous system is the network of nerve cells that transmits nerve impulses throughout the body. It is rich in both unsaturated fats and irons, making it predominantly susceptible to oxidative stress and damage. Oxidative stress reflects the disruption of the redox balance between the formation and clearance of highly free radicals, for instance reactive oxygen species (ROS) and reactive nitrogen species (RNS). Oxidative stress will further damage the cell lipid, protein and DNA. Oxidative stress has a role in the modulation of critical cellular functions, such as apoptosis program activation, ion transport and calcium mobilization which lead to cell death. Many studies were conducted to prevent neuronal cell death caused by oxidative stress through administration of free radical scavenging antioxidant, such as vitamin E. Vitamin E is known as a chain-breaking antioxidant that showed the capability to increase the viability of neuronal cells that had undergone glutamate injury by inhibiting glutamate-induced pp60 (c-Src) kinase activation. Vitamin E occurs in 8 forms, namely ?-, ?-, ?- and ?-tocopherols and ?-, ?-, ?-and ?-tocotrienols. Tocotrienols differ from tocopherols by possessing an unsaturated isoprenoid side chain instead of a saturated phytyl tail. Tocotrienols, compared to tocopherols, are lightly studied due to the abundance of ?-tocopherol in the human body and its antioxidant properties. Nevertheless, recent studies showed that ?-tocotrienol is more effective in preventing lipid peroxidation compared to ?-tocopherol. Furthermore, tocotrienol was discovered to protect neuronal cell through antioxidant-independent activities. The tocotrienol-rich fraction (TRF) is an extract that consists of 75% tocotrienol and 25% ?-tocopherol. TRF was reported to possess potent antioxidant, anti-inflammation, anticancer and cholesterol-lowering properties. Thus, this writing highlights the significant neuroprotective effects of tocotrienol and tocopherol.


Sign in / Sign up

Export Citation Format

Share Document