New optimization methods for designing rain stations network using new neural network, election, and whale optimization algorithms by combining the Kriging method

2020 ◽  
Vol 193 (1) ◽  
Author(s):  
Maryam Safavi ◽  
Abbas Khashei Siuki ◽  
Seyed Reza Hashemi
Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3385
Author(s):  
Erickson Puchta ◽  
Priscilla Bassetto ◽  
Lucas Biuk ◽  
Marco Itaborahy Filho ◽  
Attilio Converti ◽  
...  

This work deals with metaheuristic optimization algorithms to derive the best parameters for the Gaussian Adaptive PID controller. This controller represents a multimodal problem, where several distinct solutions can achieve similar best performances, and metaheuristics optimization algorithms can behave differently during the optimization process. Finding the correct proportionality between the parameters is an arduous task that often does not have an algebraic solution. The Gaussian functions of each control action have three parameters, resulting in a total of nine parameters to be defined. In this work, we investigate three bio-inspired optimization methods dealing with this problem: Particle Swarm Optimization (PSO), the Artificial Bee Colony (ABC) algorithm, and the Whale Optimization Algorithm (WOA). The computational results considering the Buck converter with a resistive and a nonlinear load as a case study demonstrated that the methods were capable of solving the task. The results are presented and compared, and PSO achieved the best results.


Author(s):  
Chunzhi Wang ◽  
Min Li ◽  
Ruoxi Wang ◽  
Han Yu ◽  
Shuping Wang

AbstractAs an important part of smart city construction, traffic image denoising has been studied widely. Image denoising technique can enhance the performance of segmentation and recognition model and improve the accuracy of segmentation and recognition results. However, due to the different types of noise and the degree of noise pollution, the traditional image denoising methods generally have some problems, such as blurred edges and details, loss of image information. This paper presents an image denoising method based on BP neural network optimized by improved whale optimization algorithm. Firstly, the nonlinear convergence factor and adaptive weight coefficient are introduced into the algorithm to improve the optimization ability and convergence characteristics of the standard whale optimization algorithm. Then, the improved whale optimization algorithm is used to optimize the initial weight and threshold value of BP neural network to overcome the dependence in the construction process, and shorten the training time of the neural network. Finally, the optimized BP neural network is applied to benchmark image denoising and traffic image denoising. The experimental results show that compared with the traditional denoising methods such as Median filtering, Neighborhood average filtering and Wiener filtering, the proposed method has better performance in peak signal-to-noise ratio.


2021 ◽  
Vol 11 (10) ◽  
pp. 4382
Author(s):  
Ali Sadeghi ◽  
Sajjad Amiri Doumari ◽  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Pavel Trojovský ◽  
...  

Optimization is the science that presents a solution among the available solutions considering an optimization problem’s limitations. Optimization algorithms have been introduced as efficient tools for solving optimization problems. These algorithms are designed based on various natural phenomena, behavior, the lifestyle of living beings, physical laws, rules of games, etc. In this paper, a new optimization algorithm called the good and bad groups-based optimizer (GBGBO) is introduced to solve various optimization problems. In GBGBO, population members update under the influence of two groups named the good group and the bad group. The good group consists of a certain number of the population members with better fitness function than other members and the bad group consists of a number of the population members with worse fitness function than other members of the population. GBGBO is mathematically modeled and its performance in solving optimization problems was tested on a set of twenty-three different objective functions. In addition, for further analysis, the results obtained from the proposed algorithm were compared with eight optimization algorithms: genetic algorithm (GA), particle swarm optimization (PSO), gravitational search algorithm (GSA), teaching–learning-based optimization (TLBO), gray wolf optimizer (GWO), and the whale optimization algorithm (WOA), tunicate swarm algorithm (TSA), and marine predators algorithm (MPA). The results show that the proposed GBGBO algorithm has a good ability to solve various optimization problems and is more competitive than other similar algorithms.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1190
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Štěpán Hubálovský

There are many optimization problems in the different disciplines of science that must be solved using the appropriate method. Population-based optimization algorithms are one of the most efficient ways to solve various optimization problems. Population-based optimization algorithms are able to provide appropriate solutions to optimization problems based on a random search of the problem-solving space without the need for gradient and derivative information. In this paper, a new optimization algorithm called the Group Mean-Based Optimizer (GMBO) is presented; it can be applied to solve optimization problems in various fields of science. The main idea in designing the GMBO is to use more effectively the information of different members of the algorithm population based on two selected groups, with the titles of the good group and the bad group. Two new composite members are obtained by averaging each of these groups, which are used to update the population members. The various stages of the GMBO are described and mathematically modeled with the aim of being used to solve optimization problems. The performance of the GMBO in providing a suitable quasi-optimal solution on a set of 23 standard objective functions of different types of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal is evaluated. In addition, the optimization results obtained from the proposed GMBO were compared with eight other widely used optimization algorithms, including the Marine Predators Algorithm (MPA), the Tunicate Swarm Algorithm (TSA), the Whale Optimization Algorithm (WOA), the Grey Wolf Optimizer (GWO), Teaching–Learning-Based Optimization (TLBO), the Gravitational Search Algorithm (GSA), Particle Swarm Optimization (PSO), and the Genetic Algorithm (GA). The optimization results indicated the acceptable performance of the proposed GMBO, and, based on the analysis and comparison of the results, it was determined that the GMBO is superior and much more competitive than the other eight algorithms.


2011 ◽  
Vol 284-286 ◽  
pp. 261-264
Author(s):  
Jing Wen Tian ◽  
Feng Jun Wu ◽  
Hui Chen ◽  
Jing Di Ren

Reference to traditional optimization methods, neural network based on improved genetic algorithm is used in optimization of reversed phase chromatography pluralistic isocratic mobile phase separation conditions. With detailing the combination of the improved genetic algorithm and neural network theory, the optimization process for the liquid chromatography conditions is introduced in details. Used this method to small peptide RP chromatography optimization, after searching operation, the establishment of an effective separation of forecast model receives satisfactory predictive value, which can prove that this method can be used in optimization of drug liquid chromatography conditions.


2021 ◽  
Author(s):  
Johann Moritz Reumschüssel ◽  
Jakob G. R. von Saldern ◽  
Yiqing Li ◽  
Christian Oliver Paschereit ◽  
Alessandro Orchini

Abstract Machine learning and automatized routines for parameter optimization have experienced a surge in development in the past years, mostly caused by the increasing availability of computing capacity. Gradient-free optimization can avoid cumbersome theoretical studies as input parameters are purely adapted based on output data. As no knowledge about the objective function is provided to the algorithms, this approach might reveal unconventional solutions to complex problems that were out of scope of classical solution strategies. In this study, the potential of these optimization methods on thermoacoustic problems is examined. The optimization algorithms are applied to a generic low-order thermoacoustic can-combustor model with several fuel injectors at different locations. We use three optimization algorithms — the well established Downhill Simplex Method, the recently proposed Explorative Gradient Method, and an evolutionary algorithm — to find optimal fuel distributions across the fuel lines while maintaining the amount of consumed fuel constant. The objective is to have minimal pulsation amplitudes. We compare the results and efficiency of the gradient-free algorithms. Additionally, we employ model-based linear stability analysis to calculate the growth rates of the dominant thermoacoustic modes. This allows us to highlight general and thermoacoustic-specific features of the optimization methods and results. The findings of this study show the potential of gradient-free optimization methods on combustor design for tackling thermoacoustic problems, and motivate further research in this direction.


2021 ◽  
Vol 13 (21) ◽  
pp. 12302
Author(s):  
Xiwen Cui ◽  
Shaojun E ◽  
Dongxiao Niu ◽  
Bosong Chen ◽  
Jiaqi Feng

As the global temperature continues to rise, people have become increasingly concerned about global climate change. In order to help China to effectively develop a carbon peak target completion plan, this paper proposes a carbon emission prediction model based on the improved whale algorithm-optimized gradient boosting decision tree, which combines four optimization methods and significantly improves the prediction accuracy. This paper uses historical data to verify the superiority of the gradient boosting tree prediction model optimized by the improved whale algorithm. In addition, this study also predicted the carbon emission values of China from 2020 to 2035 and compared them with the target values, concluding that China can accomplish the relevant target values, which suggests that this research has practical implications for China’s future carbon emission reduction policies.


Sign in / Sign up

Export Citation Format

Share Document