scholarly journals Development of Lake Vesijärvi through four decades of remediation efforts

Hydrobiologia ◽  
2020 ◽  
Vol 847 (21) ◽  
pp. 4601-4619 ◽  
Author(s):  
Kalevi Salonen ◽  
Jouko Sarvala ◽  
Jukka Horppila ◽  
Juha Keto ◽  
Ismo Malin ◽  
...  

AbstractThe diversion of sewage inputs in the mid-1970s led to an order of magnitude reduction in nutrient loading to Lake Vesijärvi, southern Finland. After the diversion, nutrient concentrations declined, consistent with a simple dilution model, and by the mid-1990s the chlorophyll concentration was reduced by 80%. The favourable development was supported by a 5-year mass removal of planktivorous and benthivorous fish and the stocking of predatory pikeperch (Sander lucioperca (L.)), although the exact mechanisms behind their effects remain obscure. Starting in 2010, oxygen-rich water from the top of the water column was pumped to the deepest parts of the lake, resulting in high deepwater oxygen concentration in winter. In summer, hypoxic or even anoxic conditions could not be avoided, but the duration of the anoxic period was markedly shortened. Because nitrate was never depleted, leaching of total nitrogen from the sediment was reduced and the same was also true for total phosphorus, but only in winter. The oxygenation stabilized deepwater nutrient concentrations to a low level, but this was not reflected in the epilimnetic total nutrient concentration or in a further decrease in the chlorophyll concentration.

2002 ◽  
Vol 6 (6) ◽  
pp. 999-1005 ◽  
Author(s):  
C. L. Biles ◽  
D. M. Paterson ◽  
R. B. Ford ◽  
M. Solan ◽  
D. G. Raffaelli

Abstract. The effect of community structure on the functioning of the ecosystem is an important issue in ecology due to continuing global species loss. The influence of infaunal community structure on the functioning of marine systems is proposed here to act primarily through bioturbation of the sediment. Nutrient concentration in the water column, generated by release from the sediment, was used as a measure of ecosystem functioning. In situ and laboratory experiments showed a significant difference in nutrient concentrations with different species treatments. Bioturbation profiles showing the incorporation of tracer particles also differed between communities with different dominant species. The behavioural differences between infaunal species, generating different modes and rates of bioturbation, are therefore proposed to influence nutrient release. The presence and quantity of bioturbating infauna also influenced the amount of sediment suspended in the water column. The increase in surface area available for microbial activity may generate an increase in nutrient cycling. Abiotic influences on sediment structure, such as flow, may have a similar effect on nutrient concentration. Annular flumes used in both laboratory and in situ experiments to generate flow conditions produced a significant increase in ammonia (NH4-N) production in macrofaunal treatments. Flow may influence the behaviour of macrofaunal species, causing changes in NH4-N production through modifying bioturbation of the sediment. Keywords: bioturbation, community structure, ccosystem functioning, estuaries, flow, infauna


1999 ◽  
Vol 39 (12) ◽  
pp. 99-107 ◽  
Author(s):  
Takao Kunimatsu ◽  
Miki Sudo ◽  
Takeshi Kawachi

In the last ten years, the number of golf courses has been increasing in some countries as the game gains popularity. This indicates, a need to estimate the nutrient loading from golf courses in order to prevent the eutrophication of water bodies. Nutrient concentrations and flow rates of a brook were measured once a week from 1989 to 1990 at two sites: Site A of a brook flowing out from D-golf course (53 ha) and Site B of the same brook discharging into the golf course from an upper forested basin (23 ha) covered mainly with planted Japanese cypress (Chamaecyparis obtusa SIEB. et ZUCC). The bedrock of the area was granite. The annual values of precipitation and mean temperature were 1947 mm and 13.5°C in 1989, respectively. The arithmetic average values of discharge from the forested basin and the golf course were 0.392 and 1.26 mg/l total nitrogen (TN), 0.0072 and 0.145 mg/l total phosphorus (TP), 0.82 and 3.53 mg/l potassium ion (K+, 5.92 and 8.24 mg/l sodium ion (Na+), 2.1 and 9.9 mg/l suspending solid (0.001–2.0 mm, SS), 0.087 and 0.147 mS/cm electric conductivity (EC), and 0.031 and 0.037 m3/km2•s specific discharge, respectively. The loading rates of the forested basin and the golf course were 5.42 and 13.5 TN, 0.133 and 3.04 TP, 8.84 and 33.9 K+, 55.0 and 73.0 Na+, and 54.3 and 118 SS in kg/ha•y. The leaching and runoff rate of nitrogen in the chemical fertilizers applied on the golf course was calculated as 32%. These results indicated the importance of controlling the phosphorus loading for the management of golf courses.


2021 ◽  
Vol 13 (5) ◽  
pp. 2477
Author(s):  
Kleopatra-Eleni Nikolaou ◽  
Theocharis Chatzistathis ◽  
Serafeim Theocharis ◽  
Anagnostis Argiriou ◽  
Stefanos Koundouras ◽  
...  

Under the current and future climate crisis, a significant rise in soil salinity will likely affect vine productivity in several Mediterranean regions. During the present research, the rootstock effects on salinity tolerance of Merlot and Cabernet Franc grapevine cultivars were studied. In a pot hydroponic culture, own-rooted Merlot and Cabernet Franc grapevine cultivars or grafted onto the rootstocks 1103 P and 101-14 Mgt were drip-irrigated with saline water. A completely randomized 3 × 2 × 2 factorial experiment was designed with two vine rootstocks or own-rooted vines, two scion cultivars, and 100 mM NaCl salinity or control treatments, with six replications. A significant effect of scion cultivar, rootstock, and salinity was observed for most of the measured parameters. At the end of salinity stress period, leaf, shoot, root, and trunk nutrient concentrations were measured. Salinity stress increased Chloride (Cl−) and Sodium (Na+) concentrations in all parts of the vines and decreased leaf concentrations of Potassium (K+), Calcium (Ca+2), Magnesium (Mg+2), Nitrogen (N), and Iron (Fe). In contrast, salinity stress increased leaf Boron (B) concentrations, whereas that of Manganese (Mn) remained unaffected. Leaf chlorophyll concentration decreased from 42% to 40% after thirty and sixty days of salt treatment, respectively. A similar trend was observed for the CCM-200 relative chlorophyll content. Salinity significantly decreased steam water potential (Ws), net CO2 assimilation rate (A), and stomatal conductance(gs) in all cases of grafted or own-rooted vines. Sixty days after the beginning of salt treatment, total Phenolics and PSII maximum quantum yield (Fv/Fm) decreased significantly. The rootstock 1103 P seems to be a better excluder for Na+ and Cl− and more tolerant to salinity compared to 101-14 Mgt rootstock.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 318 ◽  
Author(s):  
Mikkel René Andersen ◽  
Elvira de Eyto ◽  
Mary Dillane ◽  
Russell Poole ◽  
Eleanor Jennings

While winter storms are generally common in western Europe, the rarer summer storms may result in more pronounced impacts on lake physics. Using long-term, high frequency datasets of weather and lake thermal structure from the west of Ireland (2005 to 2017), we quantified the effects of storms on the physical conditions in a monomictic, deep lake close to the Atlantic Ocean. We analysed a total of 227 storms during the stratified (May to September, n = 51) and non-stratified (November to March, n = 176) periods. In winter, as might be expected, changes were distributed over the entire water column, whereas in summer, when the lake was stratified, storms only impacted the smaller volume above the thermocline. During an average summer (May–September) storm, the lake number dropped by an order of magnitude, the thermocline deepened by an average of 2.8 m, water column stability decreased by an average of 60.4 j m−2 and the epilimnion temperature decreased by a factor of five compared to the average change in winter (0.5 °C vs. 0.1 °C). Projected increases in summer storm frequency will have important implications for lake physics and biological pathways.


2009 ◽  
Vol 69 (1) ◽  
pp. 1-18 ◽  
Author(s):  
LP. Sartori ◽  
MG. Nogueira ◽  
R. Henry ◽  
EM. Moretto

During three consecutive years, monthly samples of zooplankton were taken in the lacustrine (dam) zone of Jurumirim (São Paulo, Brazil). The seasonal effect on basic limnological features (thermal regime, oxygen distribution, phytoplankton biomass, etc.) was also examined. The influence of the seasonality on the fluctuation of the zooplankton composition and abundance was not clearly detected (low degree of recurrent patterns). Rotifers (32 taxa) were the most abundant organisms during almost the entire study period with some seasonal alternations in the maximum abundance peaks of the main taxa (Conochilus unicornis, Keratella americana, K. cochlearis and Hexarthra spp.), except for Polyarthra (mainly P. vulgaris). Only occasionally copepods were numerically dominant. Higher copepod abundance was positively associated to periods of increase in the water retention time. Among the Copepoda (10 taxa) the calanoids (mainly Notodiaptomus iheringi) were more abundant, especially in warmer periods. Conversely, cyclopoids had higher abundance in autumn and winter. The species Thermocyclops minutus and T. decipiens co-occurred, but the first attained higher abundance. Some evidence of co-existence strategies between both species are considered. Cladocera (17 taxa) was never numerically dominant and the main taxa (Bosmina spp., Ceriodaphnia spp. and Diaphanosoma spp.) occurred almost the whole study period and did not present a seasonal pattern of fluctuation. Diaphanosoma (mainly D. birgei) attained the highest abundance among cladocerans. Most organisms were always found at the surface, but they also occupy the whole water column, even in periods of stratified conditions and low oxygen concentration in the bottom layers. Among the main zooplanktonic taxa, only Hexarthra avoids deep layers. An exceptionally high concentration of Copepoda nauplii on the surface was influenced by low transparency, high concentration of phytoplankton at this layer and low oxygen concentration at the bottom. In periods of higher retention timevariability there was a more heterogeneous distribution of the zooplankton in the water column. The increase in the retention time seems also to favor the copepod development. Finally, some inter-decade changes are considered on the basis of zooplankton assemblage structure observations.


2013 ◽  
Vol 10 (10) ◽  
pp. 6419-6432 ◽  
Author(s):  
C. Du ◽  
Z. Liu ◽  
M. Dai ◽  
S.-J. Kao ◽  
Z. Cao ◽  
...  

Abstract. Based on four cruises covering a seasonal cycle in 2009–2011, we examined the impact of the Kuroshio intrusion, featured by extremely oligotrophic waters, on the nutrient inventory in the central northern South China Sea (NSCS). The nutrient inventory in the upper 100 m of the water column in the study area ranged from ∼200 to ∼290 mmol m−2 for N + N (nitrate plus nitrite), from ∼13 to ∼24 mmol m−2 for soluble reactive phosphate and from ∼210 to ∼430 mmol m−2 for silicic acid. The nutrient inventory showed a clear seasonal pattern with the highest value appearing in summer, while the N + N inventory in spring and winter had a reduction of ∼13 and ∼30%, respectively, relative to that in summer. To quantify the extent of the Kuroshio intrusion, an isopycnal mixing model was adopted to derive the proportional contribution of water masses from the SCS proper and the Kuroshio along individual isopycnal surfaces. The derived mixing ratio along the isopycnal plane was then employed to predict the genuine gradients of nutrients under the assumption of no biogeochemical alteration. These predicted nutrient concentrations, denoted as Nm, are solely determined by water mass mixing. Results showed that the nutrient inventory in the upper 100 m of the NSCS was overall negatively correlated to the Kuroshio water fraction, suggesting that the Kuroshio intrusion significantly influenced the nutrient distribution in the SCS and its seasonal variation. The difference between the observed nutrient concentrations and their corresponding Nm allowed us to further quantify the nutrient removal/addition associated with the biogeochemical processes on top of the water mass mixing. We revealed that the nutrients in the upper 100 m of the water column had a net consumption in both winter and spring but a net addition in fall.


2001 ◽  
Vol 1 ◽  
pp. 605-614 ◽  
Author(s):  
J.H. Janse ◽  
W. Ligtvoet ◽  
S. Van Tol ◽  
A.H.M. Bresser

Shallow lakes respond in different ways to changes in nutrient loading (nitrogen, phosphorus). These lakes may be in two different states: turbid, dominated by phytoplankton, and clear, dominated by submerged macrophytes. Both states are self-stabilizing; a shift from turbid to clear occurs at much lower nutrient loading than a shift in the opposite direction. These critical loading levels vary among lakes and are dependent on morphological, biological, and lake management factors. This paper focuses on the role of wetland zones. Several processes are important: transport and settling of suspended solids, denitrification, nutrient uptake by marsh vegetation (increasing nutrient retention), and improvement of habitat conditions for predatory fish. A conceptual model of a lake with surrounding reed marsh was made, including these relations. The lake-part of this model consists of an existing lake model named PCLake[1]. The relative area of lake and marsh can be varied. Model calculations revealed that nutrient concentrations are lowered by the presence of a marsh area, and that the critical loading level for a shift to clear water is increased. This happens only if the mixing rate of the lake and marsh water is adequate. In general, the relative marsh area should be quite large in order to have a substantial effect. Export of nutrients can be enhanced by harvesting of reed vegetation. Optimal predatory fish stock contributes to water quality improvement, but only if combined with favourable loading and physical conditions. Within limits, the presence of a wetland zone around lakes may thus increase the ability of lakes to cope with nutrients and enhance restoration. Validation of the conclusions in real lakes is recommended, a task hampered by the fact that, in the Netherlands, many wetland zones have disappeared in the past.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 123
Author(s):  
Seth Michael Barrus ◽  
Gustavious Paul Williams ◽  
A. Woodruff Miller ◽  
M. Brett Borup ◽  
LaVere B. Merritt ◽  
...  

We describe modified sampling and analysis methods to quantify nutrient atmospheric deposition (AD) and estimate Utah Lake nutrient loading. We address criticisms of previous published collection methods, specifically collection table height, screened buckets, and assumptions of AD spatial patterns. We generally follow National Atmospheric Deposition Program (NADP) recommendations but deviate to measure lake AD, which includes deposition from both local and long-range sources. The NADP guidelines are designed to eliminate local contributions to the extent possible, while lake AD loads should include local contributions. We collected side-by-side data with tables at 1 m (previous results) and 2 m (NADP guidelines) above the ground at two separate locations. We found no statistically significant difference between data collected at the different heights. Previous published work assumed AD rates would decrease rapidly from the shore. We collected data from the lake interior and show that AD rates do not significantly decline away from the shore. This demonstrates that AD loads should be estimated by using the available data and geostatistical methods even if all data are from shoreline stations. We evaluated screening collection buckets. Standard unscreened AD samples had up to 3-fold higher nutrient concentrations than screened AD collections. It is not clear which samples best represent lake AD rates, but we recommend the use of screens and placed screens on all sample buckets for the majority of the 2020 data to exclude insects and other larger objects such as leaves. We updated AD load estimates for Utah Lake. Previous published estimates computed total AD loads of 350 and 153 tons of total phosphorous (TP) and 460 and 505 tons of dissolve inorganic nitrogen (DIN) for 2017 and 2018, respectively. Using updated collection methods, we estimated 262 and 133 tons of TP and 1052 and 482 tons of DIN for 2019 and 2020, respectively. The 2020 results used screened samplers with lower AD rates, which resulted in significantly lower totals than 2019. We present these modified methods and use data and analysis to support the updated methods and assumptions to help guide other studies of nutrient AD on lakes and reservoirs. We show that AD nutrient loads can be a significant amount of the total load and should be included in load studies.


2018 ◽  
Vol 15 (24) ◽  
pp. 7379-7401 ◽  
Author(s):  
Angela M. Kuhn ◽  
Katja Fennel ◽  
Ilana Berman-Frank

Abstract. Recent studies demonstrate that marine N2 fixation can be carried out without light by heterotrophic N2 fixers (diazotrophs). However, direct measurements of N2 fixation in aphotic environments are relatively scarce. Heterotrophic as well as unicellular and colonial photoautotrophic diazotrophs are present in the oligotrophic Gulf of Aqaba (northern Red Sea). This study evaluates the relative importance of these different diazotrophs by combining biogeochemical models with time series measurements at a 700 m deep monitoring station in the Gulf of Aqaba. At this location, an excess of nitrate, relative to phosphate, is present throughout most of the water column and especially in deep waters during stratified conditions. A relative excess of phosphate occurs only at the water surface during nutrient-starved conditions in summer. We show that a model without N2 fixation can replicate the observed surface chlorophyll but fails to accurately simulate inorganic nutrient concentrations throughout the water column. Models with N2 fixation improve simulated deep nitrate by enriching sinking organic matter in nitrogen, suggesting that N2 fixation is necessary to explain the observations. The observed vertical structure of nutrient ratios and oxygen is reproduced best with a model that includes heterotrophic as well as colonial and unicellular autotrophic diazotrophs. These results suggest that heterotrophic N2 fixation contributes to the observed excess nitrogen in deep water at this location. If heterotrophic diazotrophs are generally present in oligotrophic ocean regions, their consideration would increase current estimates of global N2 fixation and may require explicit representation in large-scale models.


Sign in / Sign up

Export Citation Format

Share Document