scholarly journals Human cardiomyocyte-derived exosomes induce cardiac gene expressions in mesenchymal stromal cells within 3D hyaluronic acid hydrogels and in dose-dependent manner

Author(s):  
Burak Derkus

AbstractAccomplishing a reliable lineage-specific differentiation of stem cells is vital in tissue engineering applications, however, this need remained unmet. Extracellular nanovesicles (particularly exosomes) have previously been shown to have this potential owing to their rich biochemical content including proteins, nucleic acids and metabolites. In this work, the potential of human cardiomyocytes-derived exosomes to induce in vitro cardiac gene expressions in human mesenchymal stem cells (hMSCs) was evaluated. Cardiac exosomes (CExo) were integrated with hyaluronic acid (HA) hydrogel, which was functionalized with tyramine (HA-Tyr) to enable the development of 3D (three dimensional), robust and bioactive hybrid cell culture construct through oxidative coupling. In HA-Tyr/CExo 3D hybrid hydrogels, hMSCs exhibited good viability and proliferation behaviours. Real time quantitative polymerase chain reaction (RT-qPCR) results demonstrated that cells incubated within HA-Tyr/CExo expressed early cardiac progenitor cell markers (GATA4, Nkx2.5 and Tbx5), but not cTnT, which is expressed in the late stages of cardiac differentiation and development. The expressions of cardiac genes were remarkably increased with increasing CExo concentration, signifying a dose-dependent induction of hMSCs. This report, to some extent, explains the potential of tissue-specific exosomes to induce lineage-specific differentiation. However, the strategy requires further mechanistic explanations so that it can be utilized in translational medicine.

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Chandrakala Aluganti Narasimhulu ◽  
Kathryn Young Burge ◽  
Yu Yuan ◽  
Sampath Parthasarathy

Background: Alpha keto acids are unstable and decompose rapidly. In this study, we tested the ability of alpha keto acids to reduce peroxides and inhibit oxidation of lipoproteins. Methods: Keto salicylic acid (KSA) and Keto Octanoicacid (KoA) were synthesized and their ability to reduce hydrogen peroxides as well as lipid peroxides (LOOH) was measured using 13-hydroperoxyoctadecadienoic acid (13-HPODE). Lipoproteins (LDL and HDL) were isolated from human plasma and oxidation of liporproteins was performed using copper and MPO in the presence or absence of the keto compounds. RAW 264.7 cells and HUVECS were incubated with LPS and mm-LDL respectively either in the presence or absence of the keto compounds. RNA was isolated from treated cells and real time PCR was performed to analyze IL-1α, IL-6, MCP-1 and VCAM1 gene expressions. Reactive oxygen species were evaluated using DCF fluorescence in presence and absence of the keto compounds. Results: KSA reduced both H2O2 and 13-HPODE whereas KoA is able to reduce the former but not the latter. Both compounds inhibited the lipoprotein oxidation in a dose dependent manner and were able to reduce ROS production by H2O2. KSA is able to inhibit both LPS as well as mm-LDL induced inflammation. However, KoA showed a dual effect as it induced inflammatory markers in the presence of LPS, but inhibited the mm-LDL-induced inflammatory gene expressions. Conclusion: The results of our studies suggest that these keto compounds a) inhibit both enzymatic and non enzymatic oxidation of lipoproteins; b) reduce peroxides and ROS and c) have inhibitory and inducing effect on inflammatory cytokine/gene production in presence of mm-LDL and LPS respectively. Based on these results, we predict that these keto compounds could have therapeutic potential in reducing CVD/atherosclerosis-associated inflammation.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Morteza Mahmoudi ◽  
Phillip C Yang ◽  
Vahid Serpooshan ◽  
Parisa Abadi ◽  
Mahyar Heydarpour

Introduction: Patient-specific human induced pluripotent stem cells (hiPSC)-derived cardiomyocytes (CMs) are increasingly used for in vitro disease modeling and drug screening, as well in vivo regenerative therapies. The cardiac differentiation efficacy of hiPSCs, together with the maturation level of generated CMs, are critical factors in achieving the required numbers of functional patient-specific cardiac muscle cells for clinical applications. Although extensive studies have improved the efficacy of differentiation and maturation processes, the role of cell sex in these processes has not been fully investigated. Hypothesis: Cell sex affects i) the cardiogenic differentiation efficacy of hiPSCs; and ii) maturation processes of hiPSC-CMs. Methods and Results: We have successfully and reproducibly fabricated patterned substrates recapitulating the 3D shape of mature CMs, using photolithography approaches, and demonstrated that the substrate could i) accelerate the differentiation of hiPSCs to CMs, and ii) facilitate maturation and functionality of immature hiPSC-CMs. Male and female hiPSCs, derived from human amniotic mesenchymal stem cells of male and female fetuses, were cultured onto flat (control) vs. patterned substrates. A total of 400 differentiation assays were conducted, 200 per each cell sex, on the flat ( n = 100) and patterned ( n = 100) substrates. A chemically defined approach was used to differentiate the cells toward CMs. On the flat (conventional) substrates, 59% of batches of male and 87% of batches of female hiPSCs differentiated into beating CMs (> 80%). On the patterned substrates, these numbers changed to 83% and 94% of successful differentiations for male and female hiPSCs, respectively. These results indicate the significant effect of substrate-mediated topographical cues on the cardiac differentiation yield of stem cells and the batch-to-batch variation. On both substrate types, female cells demonstrated significantly higher success rates of cardiac differentiation compared to the male cells. In addition, the CMs produced on the patterned substrates demonstrated higher purity than those created on the flat substrates both for male and female cells. Quantitative polymerase chain reaction (qPCR) was used to probe the male and female cell differences in expression of genes related to cardiac maturity, contractility, and Ca 2+ transport (TNNT2, MYH6, MYH7, and CACNA1c) and the outcomes revealed substantially greater expression levels of the maturation genes in differentiated female CMs cultured on the patterned substrates compared to the male cells. Conclusions: These results indicate that male and female hiPSCs and hiPSC-CMs respond differently to the identical substrates in terms of their differentiation and maturation efficacies.


2020 ◽  
Vol 11 (2) ◽  
pp. 148-155
Author(s):  
Pinjari Hameeda ◽  
Sandeep Katti ◽  
Rajkishore Jammalamadugu ◽  
Kishore Bhatt ◽  
Malleswara Rao Peram ◽  
...  

Aim: To evaluate and compare the effect of curcumin (CUR) and Nano-curcumin (N-CUR) on human-derived mesenchymal stem cells (MSCs) in a dose-dependent manner. Materials and Methods: An experimental study performed with putative MSCs from a total of five systemically healthy subjects with chronic periodontitis. These putative MSCs were isolated by cell culture and were further characterized and identified by colony-forming unit assay and immunocytochemical analysis using cell surface markers CD105, CD146, CD45 and CD73. The identified MSCs were treated with different doses of CUR and N-CUR, and compared with α-minimum essential medium (α -MEM) for its cell viability by performing MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay for 48 and 72 hr. The statistically analysis was performed using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test and Bonferroni’s post hoc test. Results: Compared to the α-MEM group, both CUR and N-CUR treated cells have shown significantly ( P = .029) higher survival rate at lower concentration (0.1 and 0.5 µM/L), at 48 hr incubation. However, there was no statistically significant difference between the CUR and N-CUR groups on cell survival rate at both 48 and 72 hr incubation. When compared between the concentrations of the same group, significantly higher cell viability ( P = .001) was observed at lower concentrations (0.1, 0.5 µM/L) in both test groups after incubation for 48 and 72 hr. Conclusion: Both CUR and N-CUR have a dose-dependent effect on human derived MSCs survival when incubated for 48 hr, whereas N-CUR shows increased cell survival rate even at 72 hr of incubation. Although, the cautious use of CUR and N-CUR at higher concentrations is recommended.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Damián Hernández ◽  
Rodney Millard ◽  
Priyadharshini Sivakumaran ◽  
Raymond C. B. Wong ◽  
Duncan E. Crombie ◽  
...  

Background.Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes.Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs) for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days.Results. In iPS(Foreskin)-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression ofACTC1,TNNT2,MYH7, andMYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner.Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1705-1705
Author(s):  
Masayuki Oki ◽  
Yuehua Jiang ◽  
Catherine M. Verfaillie

Abstract The Wnt/β-catenin pathway is important for maintenance of the undifferentiated state of human embryonic stem cells (ESCs), hematopoietic stem cells (HSCs) and other stem cells. We here tested if β-catenin activation, by inhibiting GSK3 β with BIO (6-Bromoindirubin-3′-oxime), affects the differentiation status of murine multipotent adult progenitor cells (mMAPCs). mMAPCs were cultured with or without 0.1–2 μ M BIO, LIF, EGF and PDGF-BB, at low density (plating density of 100/cm2 and cells passed every 2 days) or at high confluency (like ESCs). Quantitative RT-PCR (Q-RT-PCR) was done weekly for the ESC-specific pluripotency transcripts, Oct4, Rex1, Nanog, UTF1 and E-Ras, and lineage commitment genes, vWF, VE-cadherin, Sox1, Nestin, CK19, Albumin, HNF3β and AFP. After 2–4 weeks, cells were analyzed by FACS for ESC/MAPC specific antigens, and by immunohistochemsitry for Oct4, β-catenin and E-cadherin protein. Furthermore, cells were differentiated into endothelial cells and hepatocytes by using VEGF-A and HGF/FGF4, respectively for 2 weeks. Q-RT-PCR was used to demonstrate lineage differentiation. BIO caused a dose-dependent clustering of mMAPCs from 4 days after treatment at both cell densities. FACS phenotype of low- and high-density mMAPCs was not affected by BIO. Nanog mRNA was not detected in any of the cell populations. However, Oct4, Rex1, vWF, and CK19 mRNA levels decreased in a BIO dose-dependent manner in mMAPCs maintained at low density, while they acquired higher levels of Sox1 mRNA (P=NS). At high-density, Oct4 and Rex1 mRNA level decreased in a BIO dose-dependent manner for the first week. On the other hand, 0.1 μ M BIO-treatment induced higher levels of Oct4 and Rex1 in cells maintained at high density. β-catenin and E-cadherin protein was highly expressed in clusters of low-density mMAPCs induced by BIO as well as BIO-treated mMAPCs maintained at ESC densities. In both cell densities, only mMAPCs treated with 1 or 2 μM BIO contained large dense mMAPCs clusters that expressed very high levels of β-catenin and E-cadherin. There was no statistical difference of differentiation potential between BIO conditions and cell densities. BIO may not allow culture of mMAPCs without loss of Oct4 as it did for ESCs, but induces clusters like ESCs in a BIO-dose dependent manner. High concentrations of BIO enhances β-catenin and E-cadherin protein expression. BIO may induce lineage commitment of mMAPCs. Despite loss of Oct4 mRNA and protein, MAPCs treated with BIO continue to have the ability to differentiate. Ongoing studies are testing whether BIO treated cells maintained at high density also maintain in vivo engraftment and differentiation potential.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Mingyu Zhang ◽  
Yue Du ◽  
Renzhong Lu ◽  
You Shu ◽  
Wei Zhao ◽  
...  

In the present study, we demonstrated that bone marrow mesenchymal stem cells (BMSCs) of the 3rd passage displayed the senescence-associated phenotypes characterized with increased activity of SA-β-gal, altered autophagy, and increased G1 cell cycle arrest, ROS production, and expression of p53 andp21Cip1/Waf1compared with BMSCs of the 1st passage. Cholesterol (CH) reduced the number of SA-β-gal positive cells in a dose-dependent manner in aging BMSCs induced by H2O2and the 3rd passage BMSCs. Moreover, CH inhibited the production of ROS and expression of p53 andp21Cip1/Waf1in both cellular senescence models and decreased the percentage of BMSCs in G1 cell cycle in the 3rd passage BMSCs. CH prevented the increase in SA-β-gal positive cells induced by RITA (reactivation of p53 and induction of tumor cell apoptosis, a p53 activator) or 3-MA (3-methyladenine, an autophagy inhibitor). Our results indicate that CH not only is a structural component of cell membrane but also functionally contributes to regulating cellular senescence by modulating cell cycle, autophagy, and the ROS/p53/p21Cip1/Waf1signaling pathway.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kenji Shono ◽  
Izumi Yamaguchi ◽  
Yoshifumi Mizobuchi ◽  
Hiroshi Kagusa ◽  
Akiko Sumi ◽  
...  

Abstract Glioblastoma multiforme involves glioma stem cells (GSCs) that are resistant to various therapeutic approaches. Here, we studied the importance of paracrine signaling in the glioma microenvironment by focusing on the celecoxib-mediated role of chemokines C–C motif ligand 2 (CCL2), C-X-C ligand 10 (CXCL10), and their receptors, CCR2 and CXCR3, in GSCs and a GSC-bearing malignant glioma model. C57BL/6 mice were injected with orthotopic GSCs intracranially and divided into groups administered either 10 or 30 mg/kg celecoxib, or saline to examine the antitumor effects associated with chemokine expression. In GSCs, we analyzed cell viability and expression of chemokines and their receptors in the presence/absence of celecoxib. In the malignant glioma model, celecoxib exhibited antitumor effects in a dose dependent manner and decreased protein and mRNA levels of Ccl2 and CxcL10 and Cxcr3 but not of Ccr2. CCL2 and CXCL10 co-localized with Nestin+ stem cells, CD16+ or CD163+ macrophages and Iba-1+ microglia. In GSCs, celecoxib inhibited Ccl2 and Cxcr3 expression in a nuclear factor-kappa B-dependent manner but not Ccr2 and CxcL10. Moreover, Ccl2 silencing resulted in decreased GSC viability. These results suggest that celecoxib-mediated regulation of the CCL2/CCR2 and CXCL10/ CXCR3 axes may partially contribute to glioma-specific antitumor effects.


2021 ◽  
Vol 21 ◽  
Author(s):  
Qiu-Yun Li ◽  
Juan Chen ◽  
Yong-Heng Luo ◽  
Wei Zhang ◽  
En-Hua Xiao

Objective: The treatment of liver failure by stem cell transplantation has attracted growing interest. Herein, we aim to explore the role of sodium butyrate (NaB) in the hepatic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) under liver-specific factors induction in vitro and vivo. Materials & Methods: We isolated BM-MSCs from the mononuclear cell fraction of rabbit bone marrow samples, and identified the cells by Immunophenotypic analysis. We investigated the effects of different concentrations and induction conditions. The histone deacetylase inhibitor NaB induced hepatic differentiation of BM-MSCs under liver-specific factors induction in vitro. Morphological features, liver-specific gene and protein expression, and functional analyses in vitro and vivo were performed to evaluate the hepatic differentiation of BM-MSCs. Results: Our results showed that pre-treated NaB inhibited the expression of liver-specific protein in a dose-dependent manner. The induction efficiency of NaB with 24h pre-treatment was higher than that of NaB continuous intervention. 0.5 mM 24h NaB pre-treated cells can improve liver tissue damage in vivo. And the liver ALB, AAT and the serum TP were significantly increased, while the serum ALT was significantly reduced. Conclusion: Continuous NaB treatment can inhibit BM-MSCs proliferation in a dose-dependent manner at a certain concentration range. 0.5 mM 24h pre-treatment of NaB enhanced differentiation of BM-MSCs into hepatocytes and improves liver injury in vitro and vivo.


Sign in / Sign up

Export Citation Format

Share Document