Comparison of Effects of Curcumin and Nano-curcumin on the Survival of Human-Derived Mesenchymal Stem Cells: An Experimental Study

2020 ◽  
Vol 11 (2) ◽  
pp. 148-155
Author(s):  
Pinjari Hameeda ◽  
Sandeep Katti ◽  
Rajkishore Jammalamadugu ◽  
Kishore Bhatt ◽  
Malleswara Rao Peram ◽  
...  

Aim: To evaluate and compare the effect of curcumin (CUR) and Nano-curcumin (N-CUR) on human-derived mesenchymal stem cells (MSCs) in a dose-dependent manner. Materials and Methods: An experimental study performed with putative MSCs from a total of five systemically healthy subjects with chronic periodontitis. These putative MSCs were isolated by cell culture and were further characterized and identified by colony-forming unit assay and immunocytochemical analysis using cell surface markers CD105, CD146, CD45 and CD73. The identified MSCs were treated with different doses of CUR and N-CUR, and compared with α-minimum essential medium (α -MEM) for its cell viability by performing MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay for 48 and 72 hr. The statistically analysis was performed using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test and Bonferroni’s post hoc test. Results: Compared to the α-MEM group, both CUR and N-CUR treated cells have shown significantly ( P = .029) higher survival rate at lower concentration (0.1 and 0.5 µM/L), at 48 hr incubation. However, there was no statistically significant difference between the CUR and N-CUR groups on cell survival rate at both 48 and 72 hr incubation. When compared between the concentrations of the same group, significantly higher cell viability ( P = .001) was observed at lower concentrations (0.1, 0.5 µM/L) in both test groups after incubation for 48 and 72 hr. Conclusion: Both CUR and N-CUR have a dose-dependent effect on human derived MSCs survival when incubated for 48 hr, whereas N-CUR shows increased cell survival rate even at 72 hr of incubation. Although, the cautious use of CUR and N-CUR at higher concentrations is recommended.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Mingyu Zhang ◽  
Yue Du ◽  
Renzhong Lu ◽  
You Shu ◽  
Wei Zhao ◽  
...  

In the present study, we demonstrated that bone marrow mesenchymal stem cells (BMSCs) of the 3rd passage displayed the senescence-associated phenotypes characterized with increased activity of SA-β-gal, altered autophagy, and increased G1 cell cycle arrest, ROS production, and expression of p53 andp21Cip1/Waf1compared with BMSCs of the 1st passage. Cholesterol (CH) reduced the number of SA-β-gal positive cells in a dose-dependent manner in aging BMSCs induced by H2O2and the 3rd passage BMSCs. Moreover, CH inhibited the production of ROS and expression of p53 andp21Cip1/Waf1in both cellular senescence models and decreased the percentage of BMSCs in G1 cell cycle in the 3rd passage BMSCs. CH prevented the increase in SA-β-gal positive cells induced by RITA (reactivation of p53 and induction of tumor cell apoptosis, a p53 activator) or 3-MA (3-methyladenine, an autophagy inhibitor). Our results indicate that CH not only is a structural component of cell membrane but also functionally contributes to regulating cellular senescence by modulating cell cycle, autophagy, and the ROS/p53/p21Cip1/Waf1signaling pathway.


2021 ◽  
Vol 21 ◽  
Author(s):  
Qiu-Yun Li ◽  
Juan Chen ◽  
Yong-Heng Luo ◽  
Wei Zhang ◽  
En-Hua Xiao

Objective: The treatment of liver failure by stem cell transplantation has attracted growing interest. Herein, we aim to explore the role of sodium butyrate (NaB) in the hepatic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) under liver-specific factors induction in vitro and vivo. Materials & Methods: We isolated BM-MSCs from the mononuclear cell fraction of rabbit bone marrow samples, and identified the cells by Immunophenotypic analysis. We investigated the effects of different concentrations and induction conditions. The histone deacetylase inhibitor NaB induced hepatic differentiation of BM-MSCs under liver-specific factors induction in vitro. Morphological features, liver-specific gene and protein expression, and functional analyses in vitro and vivo were performed to evaluate the hepatic differentiation of BM-MSCs. Results: Our results showed that pre-treated NaB inhibited the expression of liver-specific protein in a dose-dependent manner. The induction efficiency of NaB with 24h pre-treatment was higher than that of NaB continuous intervention. 0.5 mM 24h NaB pre-treated cells can improve liver tissue damage in vivo. And the liver ALB, AAT and the serum TP were significantly increased, while the serum ALT was significantly reduced. Conclusion: Continuous NaB treatment can inhibit BM-MSCs proliferation in a dose-dependent manner at a certain concentration range. 0.5 mM 24h pre-treatment of NaB enhanced differentiation of BM-MSCs into hepatocytes and improves liver injury in vitro and vivo.


Author(s):  
Nazlı Çil ◽  
Mutlu Yaka ◽  
Nazire Gül Neşet ◽  
Mücahit Seçme ◽  
Gülçin Abban Mete

Abstract Objectives Stem cell treatment is based on Melatonin which is crucial for lots of pathological and physiological pathways. Our aim is determining the most appropriate dose of melatonin affecting the rat adipose tissue mesenchymal stem cells. Methods Stem cells were isolated from male rat adipose tissue. Differentiation and characterization experiments were performed. Cell viability analyses in stem cells were used the XTT [2,3-Bis-(2-methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide] assay. After 24 h incubation, different concentrations (0.5, 1, 5, 10, 50 µM) of extract were treated to the stem cells for 24 h, 48 and 72 h considering time and dose dependent manner. Total antioxidant status (TAS) and the total oxidant status (TOS) in control cells and melatonin treated cells (5, 10 µM) were determined Rel Assay commercial kits. Results In 24 h, melatonin increased cell viability in all groups. When we evaluate the effect of melatonin in 48 h, the most proliferation increase was seen at 5, 10 µM doses. When the total oxidant activity melatonin was found to be significantly lower in 5 and 10 µM dose groups of melatonin. Conclusions Melatonin increases the survivor of stem cells and the most effective dose is 5 and 10 µM. The reduction of the oxidative stress index as a result of treating melatonin to mesenchymal stem cells showed that melatonin is a powerful antioxidant for stem cells.


2015 ◽  
Vol 51 (1) ◽  
pp. 127-141
Author(s):  
Ming-Ming Yang ◽  
Wei Huang ◽  
Dian-Ming Jiang

Tetramethylpyrazine (TMP), a major active ingredient of Ligusticum wallichi Franchat extract (a Chinese herb), exhibits neuroprotective properties in ischemia. In this study, we assessed its protective effects on Schwann cells (SCs) by culturing them in the presence of oxygen glucose deprivation (OGD) conditions and measuring cell survival in cold ischemic rat nerves. In the OGD-induced ischemic injury model of SCs, we demonstrated that TMP treatment not only reduced OGD-induced cell viability losses, cell death, and apoptosis of SCs in a dose-dependent manner, and inhibited LDH release, but also suppressed OGD-induced downregulation of Bcl-2 and upregulation of Bax and caspase-3, as well as inhibited the consequent activation of caspase-3. In the cold ischemic nerve model, we found that prolonged cold ischemic exposure for four weeks was markedly associated with the absence of SCs, a decrease in cell viability, and apoptosis in preserved nerve segments incubated in University of Wisconsin solution (UWS) alone. However, TMP attenuated nerve segment damage by preserving SCs and antagonizing the decrease in nerve fiber viability and increase in TUNEL-positive cells in a dose-dependent manner. Collectively, our results indicate that TMP not only provides protective effects in an ischemia-like injury model of cultured rat SCs by regulating Bcl-2, Bax, and caspase-3, but also increases cell survival and suppresses apoptosis in the cold ischemic nerve model after prolonged ischemic exposure for four weeks. Therefore, TMP may be a novel and effective therapeutic strategy for preventing peripheral nervous system ischemic diseases and improving peripheral nerve storage.


2018 ◽  
Vol 128 (1) ◽  
pp. 287-295 ◽  
Author(s):  
Jonathan G. Thomas ◽  
Brittany C. Parker Kerrigan ◽  
Anwar Hossain ◽  
Joy Gumin ◽  
Naoki Shinojima ◽  
...  

OBJECTIVEMesenchymal stem cells (MSCs) have been shown to localize to gliomas after intravascular delivery. Because these cells home to areas of tissue injury, the authors hypothesized that the administration of ionizing radiation (IR) to tumor would enhance the tropism of MSCs to gliomas. Additionally, they sought to identify which radiation-induced factors might attract MSCs.METHODSTo assess the effect of IR on MSC migration in vitro, transwell assays using conditioned medium (CM) from an irradiated commercially available glioma cell line (U87) and from irradiated patient-derived glioma stem-like cells (GSCs; GSC7-2 and GSC11) were employed. For in vivo testing, green fluorescent protein (GFP)-labeled MSCs were injected into the carotid artery of nude mice harboring orthotopic U87, GSC7-2, or GSC17 xenografts that were treated with either 0 or 10 Gy of IR, and brain sections were quantitatively analyzed by immunofluorescence for GFP-positive cells. These GSCs were used because GSC7-2 is a weak attractor of MSCs at baseline, whereas GSC17 is a strong attractor. To determine the factors implicated in IR-induced tropism, CM from irradiated GSC7-2 and from GSC11 was assayed with a cytokine array and quantitative ELISA.RESULTSTranswell migration assays revealed statistically significant enhanced MSC migration to CM from irradiated U87, GSC7-2, and GSC11 compared with nonirradiated controls and in a dose-dependent manner. After their intravascular delivery into nude mice harboring orthotopic gliomas, MSCs engrafted more successfully in irradiated U87 (p = 0.036), compared with nonirradiated controls. IR also significantly increased the tropism of MSCs to GSC7-2 xenografts (p = 0.043), which are known to attract MSCs only poorly at baseline (weak-attractor GSCs). Ionizing radiation also increased the engraftment of MSCs in strong-attractor GSC17 xenografts, but these increases did not reach statistical significance. The chemokine CCL2 was released by GSC7-2 and GSC11 after irradiation in a dose-dependent manner and mediated in vitro transwell migration of MSCs. Immunohistochemistry revealed increased CCL2 in irradiated GSC7-2 gliomas near the site of MSC engraftment.CONCLUSIONSAdministering IR to gliomas enhances MSC localization, particularly in GSCs that attract MSCs poorly at baseline. The chemokine CCL2 appears to play a crucial role in the IR-induced tropism of MSCs to gliomas.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Heike Thomas ◽  
Marcus Jäger ◽  
Katharina Mauel ◽  
Sven Brandau ◽  
Sara Lask ◽  
...  

Tissue injury induces an inflammatory response accompanied by the recruitment of immune cells and of mesenchymal stem cells (MSC) that contribute to tissue regeneration. After stimulation with interleukin- (IL-) 12 and IL-18 natural killer (NK) cells secrete the proinflammatory cytokine interferon- (IFN-)γ. IFN-γplays a crucial role in the defense against infections and modulates tissue regeneration. In consideration of close proximity of NK cells and MSC at the site of injury we investigated if MSC could influence the ability of NK-cells to produce IFN-γ. Coculture experiments were performed with bone marrow-derived human MSC and human NK cells. MSC enhanced the ability of IL-12/IL-18-stimulated NK cells to secrete IFN-γin a dose-dependent manner. This activation of NK cells was dependent on cell-cell contact as well as on soluble factors. The increased IFN-γsecretion from NK cells after contact with MSC correlated with an increased level of intracellular IFN-γ. Alterations in the IL-12 signaling pathway including an increased expression of the IL-12β1 receptor subunit and an increased phosphorylation of signal transducer and activator of transcription 4 (STAT4) could be observed. In conclusion, MSC enhance the IFN-γrelease from NK cells which might improve the defense against infections at the site of injury but additionally might affect tissue regeneration.


2009 ◽  
Vol 15 (9) ◽  
pp. 2459-2470 ◽  
Author(s):  
Garry P. Duffy ◽  
Tabassum Ahsan ◽  
Timothy O'Brien ◽  
Frank Barry ◽  
Robert M. Nerem

2020 ◽  
Author(s):  
Yiming Zhao ◽  
Dingding Yu ◽  
Hongda Wang ◽  
Wang Jin ◽  
Xiang Li ◽  
...  

Abstract Background: Endotoxemia, mediated by uncontrolled immunocytes activation toward Lipopolysaccharide, could deteriorate into severe septic shock, but with limited treatment effect. Mesenchymal stem cells (MSCs), with excellent immune regulatory capacities, have displayed potential in multiple inflammatory disease treatment. Gelactin-9 (Gal-9), a newly discovered immune checkpoint, has been demonstrated to mediate immunomodulatory effect of MSCs in vitro. However, its in vivo role in alleviating endotoxemia remains to be elucidated.Methods: MSCs (2.5×10⁵/ml) were obtained and stimulated with IFN-γ (20ng/ml) for 72 hours. Gal-9 expression on MSCs were measured by ELISA, RT-PCR, flow cytometry and immunofluorescence respectively. Then, experimental endotoxemia was induced by LPS injection (10mg/kg, i.p.), followed by the treatment with Gal-9-MSC (20ng/ml, 72 hours), MSCs and MSC+α-lactose (10.8mg/mL, 500ul, i.v.). Therapeutic effects of MSC-based treatments were assessed by monitoring murine sepsis score, survival rate, splenocyte proportion, phenotype polarization, inflammatory mediator levels and pathological manifestations. Furthermore, Gal-9 expression in multiple organs was also detected after administering the treatments.Results: It has been found that MSCs expressed Gal-9 and its level was increased in a dose-dependent manner after being stimulated by IFN-γ. Moreover, adoptive transferred of IFN-γ pre-stimulated MSCs into endotoxemia mice was found with relieved symptoms and increased survival rate. Flow cytometry analysis indicated that Gal-9-MSC could promote macrophage polarization to M2-subtype and increase Treg ratios in spleen. Further results also demonstrated that, Gal-9-mediated MSC therapy could assist in attenuating local and circulating pro-inflammatory mediators expression (TNF-α, IL-1β, IFN-γ and iNOS), but increasing anti-inflammatory mediators expression (T-SOD and IL-35). Additionally, after administrating Gal-9-MSC, it was also found there was a significant relief in pathological manifestations, and with a higher expression of Gal-9 in liver, kidney and lung homogenate.Conclusions: This study revealed that Gal-9 mediated therapeutic effects of MSCs in alleviating endotoxemia injury, which provides a novel idea for supplementing the research of MSC immunoregulatory mechanism, and offers an excellent candidate to be used in treatment of endotoxemia in the clinical settings.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4230-4230
Author(s):  
Godfrey ChiFung Chan ◽  
F.Y. Mo ◽  
K.H.K. Yip ◽  
J. Li ◽  
H. Law ◽  
...  

Abstract Background & Objective: Dental implant requires osseointegration for anchoring and human’s oral cavity has plenty of bacterial oral flora. Whether these bacteria have any effects on the human mesenchymal Stem Cells (MSCs) that can differentiate into osteoblasts remains unknown. We therefore investigated the effect of bacterial endotoxins commonly found in the oral cavity and gastrointestinal tract, namely lipopolysaccharides (LPS, Escherichia coli) and lipoteichoic acid (LTA, Streptococcus pyogenes), on the proliferation and osteogenic differentiation of MSCs. Methods: Human MSCs are derived from bone marrow (BM) of normal healthy donors. The culture condition, immunophenotyping determination and tests of differentiating functions of the human MSCs were similar to what we reported previously (Li J, Br J Haematol 2004). The proliferation of MSCs under either a 3-day or a prolonged 7-day endotoxins challenge was evaluated by XTT assay. The extent of osteogenic differentiation was examined under microscopy and measured by the increase in alkaline phosphatase (ALP) activity at day 10 and the calcium mineralization/deposition per unit volume of protein at day 14. Results: There was no significant effect of LPS and LTA on the growth and proliferation of MSCs, even under a relatively high dose. However, continued LPS challenge on MSCs under osteogenic culture condition was shown to increase the ALP activity and calcium deposition in a dose-dependent manner (100ng/ml, 1 ug/ml, 10ug/ml). No such phenomenon can be identified when LTA challenge was used. Conclusions: LPS and LTA did not show any significant effect on the proliferation and growth of human MSCs. However, LPS enhanced the osteogenic differentiation of MSCs in a dose-dependent manner. Our finding suggests that the endotoxin from bacteria commonly found in the oral cavity and gut does not have any negative impact on MSCs induced osteogenesis.


Sign in / Sign up

Export Citation Format

Share Document